Package 'microeco'

Title: Microbial Community Ecology Data Analysis
Description: A series of statistical and plotting approaches in microbial community ecology based on the R6 class. The classes are designed for data preprocessing, taxa abundance plotting, alpha diversity analysis, beta diversity analysis, differential abundance test, null model analysis, network analysis, machine learning, environmental data analysis and functional analysis.
Authors: Chi Liu [aut, cre], Felipe R. P. Mansoldo [ctb], Minjie Yao [ctb], Xiangzhen Li [ctb]
Maintainer: Chi Liu <[email protected]>
License: GPL-3
Version: 1.12.1
Built: 2025-01-21 12:36:48 UTC
Source: https://github.com/chiliubio/microeco

Help Index


Copy an R6 class object

Description

Copy an R6 class object

Usage

clone(x, deep = TRUE)

Arguments

x

R6 class object

deep

default TRUE; TRUE means deep copy, i.e. copied object is unlinked with the original one.

Value

identical but unlinked R6 object

Examples

data("dataset")
clone(dataset)

The dataset structured with microtable class for the demonstration of examples

Description

The dataset arose from 16S rRNA gene amplicon sequencing of wetland soils in China <doi:10.1016/j.geoderma.2018.09.035>. In dataset$sample_table, the 'Group' column means Chinese inland wetlands (IW), coastal wetland (CW) and Tibet plateau wetlands (TW). The column 'Type' denotes the sampling region: northeastern region (NE), northwest region (NW), North China area (NC), middle-lower reaches of the Yangtze River (YML), southern coastal area (SC), upper reaches of the Yangtze River (YU) and Qinghai-Tibet Plateau (QTP). The column 'Saline' represents the saline soils and non-saline soils.

Usage

data(dataset)

Format

An R6 class object

Details

  • sample_table: sample information table

  • otu_table: species-community abundance table

  • tax_table: taxonomic table

  • phylo_tree: phylogenetic tree

  • taxa_abund: taxa abundance list with several tables for Phylum...Genus

  • alpha_diversity: alpha diversity table

  • beta_diversity: list with several beta diversity distance matrix


Remove all factors in a data frame

Description

Remove all factors in a data frame

Usage

dropallfactors(x, unfac2num = FALSE, char2num = FALSE)

Arguments

x

data frame

unfac2num

default FALSE; whether try to convert all character columns to numeric; if FALSE, only try to convert column with factor attribute. Note that this can only transform the columns that may be transformed to numeric without using factor.

char2num

default FALSE; whether force all the character to be numeric class by using factor as an intermediate.

Value

data frame without factor

Examples

data("taxonomy_table_16S")
taxonomy_table_16S[, 1] <- as.factor(taxonomy_table_16S[, 1])
str(dropallfactors(taxonomy_table_16S))

The environmental factors for the 16S example data

Description

The environmental factors for the 16S example data

Usage

data(env_data_16S)

The FungalTraits database for fungi trait prediction

Description

The FungalTraits database for fungi trait prediction

Usage

data(fungi_func_FungalTraits)

The FUNGuild database for fungi trait prediction

Description

The FUNGuild database for fungi trait prediction

Usage

data(fungi_func_FUNGuild)

Introduction to microeco package (https://github.com/ChiLiubio/microeco)

Description

For the detailed tutorial on microeco package, please follow the links:
Online tutorial website: https://chiliubio.github.io/microeco_tutorial/
Download tutorial: https://github.com/ChiLiubio/microeco_tutorial/releases

For each R6 class, please open the help document by searching the class name. For example, to search microtable class, please run the command help(microtable) or ?microtable.
Another way to open the help document of R6 class is to click the following links collected:
microtable
trans_abund
trans_venn
trans_alpha
trans_beta
trans_diff
trans_network
trans_nullmodel
trans_classifier
trans_env
trans_func
trans_norm

To report bugs or discuss questions, please use Github Issues (https://github.com/ChiLiubio/microeco/issues). Before creating a new issue, please read the guideline (https://chiliubio.github.io/microeco_tutorial/notes.html#github-issues).

To cite microeco package in publications, please run the following command to get the reference: citation("microeco")

Reference:
Chi Liu, Yaoming Cui, Xiangzhen Li and Minjie Yao. 2021. microeco: an R package for data mining in microbial community ecology. FEMS Microbiology Ecology, 97(2): fiaa255. DOI:10.1093/femsec/fiaa255


Create microtable object to store and manage all the basic files.

Description

This class is a wrapper for a series of operations on the input files and basic manipulations, including microtable object creation, data trimming, data filtering, rarefaction based on Paul et al. (2013) <doi:10.1371/journal.pone.0061217>, taxonomic abundance calculation, alpha and beta diversity calculation based on the An et al. (2019) <doi:10.1016/j.geoderma.2018.09.035> and Lozupone et al. (2005) <doi:10.1128/AEM.71.12.8228-8235.2005> and other basic operations.

Online tutorial: https://chiliubio.github.io/microeco_tutorial/
Download tutorial: https://github.com/ChiLiubio/microeco_tutorial/releases

Format

microtable.

Methods

Public methods


Method new()

Usage
microtable$new(
  otu_table,
  sample_table = NULL,
  tax_table = NULL,
  phylo_tree = NULL,
  rep_fasta = NULL,
  auto_tidy = FALSE
)
Arguments
otu_table

data.frame; The feature abundance table; rownames are features (e.g. OTUs/ASVs/species/genes); column names are samples.

sample_table

data.frame; default NULL; The sample information table; rownames are samples; columns are sample metadata; If not provided, the function can generate a table automatically according to the sample names in otu_table.

tax_table

data.frame; default NULL; The taxonomic information table; rownames are features; column names are taxonomic classes.

phylo_tree

phylo; default NULL; The phylogenetic tree that must be read with the read.tree function of ape package.

rep_fasta

DNAStringSet, list or DNAbin format; default NULL; The sequences. The sequences should be read with the readDNAStringSet function in Biostrings package (DNAStringSet class), read.fasta function in seqinr package (list class), or read.FASTA function in ape package (DNAbin class).

auto_tidy

default FALSE; Whether tidy the files in the microtable object automatically. If TRUE, the function can invoke the tidy_dataset function.

Returns

an object of class microtable with the following components:

sample_table

The sample information table.

otu_table

The feature table.

tax_table

The taxonomic table.

phylo_tree

The phylogenetic tree.

rep_fasta

The sequence.

taxa_abund

default NULL; use cal_abund function to calculate.

alpha_diversity

default NULL; use cal_alphadiv function to calculate.

beta_diversity

default NULL; use cal_betadiv function to calculate.

Examples
data(otu_table_16S)
data(taxonomy_table_16S)
data(sample_info_16S)
data(phylo_tree_16S)
m1 <- microtable$new(otu_table = otu_table_16S)
m1 <- microtable$new(sample_table = sample_info_16S, otu_table = otu_table_16S, 
  tax_table = taxonomy_table_16S, phylo_tree = phylo_tree_16S)
# trim the files in the dataset
m1$tidy_dataset()

Method filter_pollution()

Filter the features considered pollution in microtable$tax_table. This operation will remove any line of the microtable$tax_table containing any the word in taxa parameter regardless of word case.

Usage
microtable$filter_pollution(taxa = c("mitochondria", "chloroplast"))
Arguments
taxa

default c("mitochondria", "chloroplast"); filter mitochondria and chloroplast, or others as needed.

Returns

None

Examples
m1$filter_pollution(taxa = c("mitochondria", "chloroplast"))

Method filter_taxa()

Filter the feature with low abundance and/or low occurrence frequency.

Usage
microtable$filter_taxa(rel_abund = 0, freq = 1, include_lowest = TRUE)
Arguments
rel_abund

default 0; the relative abundance threshold, such as 0.0001.

freq

default 1; the occurrence frequency threshold. For example, the number 2 represents filtering the feature that occurs less than 2 times. A number smaller than 1 is also allowable. For instance, the number 0.1 represents filtering the feature that occurs in less than 10% samples.

include_lowest

default TRUE; whether include the feature with the threshold.

Returns

None

Examples
\donttest{
d1 <- clone(m1)
d1$filter_taxa(rel_abund = 0.0001, freq = 0.2)
}

Method rarefy_samples()

Rarefy communities to make all samples have same count number.

Usage
microtable$rarefy_samples(
  method = c("rarefy", "SRS")[1],
  sample.size = NULL,
  ...
)
Arguments
method

default c("rarefy", "SRS")[1]; "rarefy" represents the classical resampling like rrarefy function of vegan package. "SRS" is scaling with ranked subsampling method based on the SRS package provided by Lukas Beule and Petr Karlovsky (2020) <DOI:10.7717/peerj.9593>.

sample.size

default NULL; libray size. If not provided, use the minimum number across all samples. For "SRS" method, this parameter is passed to Cmin parameter of SRS function of SRS package.

...

parameters pass to norm function of trans_norm class.

Returns

None; rarefied dataset.

Examples
\donttest{
m1$rarefy_samples(sample.size = min(m1$sample_sums()))
}

Method tidy_dataset()

Trim all the data in the microtable object to make taxa and samples consistent. The results are intersections across data.

Usage
microtable$tidy_dataset(main_data = FALSE)
Arguments
main_data

default FALSE; if TRUE, only basic data in microtable object is trimmed. Otherwise, all data, including taxa_abund, alpha_diversity and beta_diversity, are all trimed.

Returns

None. The data in the object are tidied up. If tax_table is in object, its row names are totally same with the row names of otu_table.

Examples
m1$tidy_dataset(main_data = TRUE)

Method add_rownames2taxonomy()

Add the rownames of microtable$tax_table as its last column. This is especially useful when the rownames of microtable$tax_table are required as a taxonomic level for the taxonomic abundance calculation and biomarker idenfification.

Usage
microtable$add_rownames2taxonomy(use_name = "OTU")
Arguments
use_name

default "OTU"; The column name used in the tax_table.

Returns

NULL, a new tax_table stored in the object.

Examples
\donttest{
m1$add_rownames2taxonomy()
}

Method sample_sums()

Sum the species number for each sample.

Usage
microtable$sample_sums()
Returns

species number of samples.

Examples
\donttest{
m1$sample_sums()
}

Method taxa_sums()

Sum the species number for each taxa.

Usage
microtable$taxa_sums()
Returns

species number of taxa.

Examples
\donttest{
m1$taxa_sums()
}

Method sample_names()

Show sample names.

Usage
microtable$sample_names()
Returns

sample names.

Examples
\donttest{
m1$sample_names()
}

Method taxa_names()

Show taxa names of tax_table.

Usage
microtable$taxa_names()
Returns

taxa names.

Examples
\donttest{
m1$taxa_names()
}

Method rename_taxa()

Rename the features, including the rownames of otu_table, rownames of tax_table, tip labels of phylo_tree and rep_fasta.

Usage
microtable$rename_taxa(newname_prefix = "ASV_")
Arguments
newname_prefix

default "ASV_"; the prefix of new names; new names will be newname_prefix + numbers according to the rownames order of otu_table.

Returns

None; renamed dataset.

Examples
\donttest{
m1$rename_taxa()
}

Method merge_samples()

Merge samples according to specific group to generate a new microtable.

Usage
microtable$merge_samples(group)
Arguments
group

a column name in sample_table of microtable object.

Returns

a new merged microtable object.

Examples
\donttest{
m1$merge_samples("Group")
}

Method merge_taxa()

Merge taxa according to specific taxonomic rank to generate a new microtable.

Usage
microtable$merge_taxa(taxa = "Genus")
Arguments
taxa

default "Genus"; the specific rank in tax_table.

Returns

a new merged microtable object.

Examples
\donttest{
m1$merge_taxa(taxa = "Genus")
}

Method save_table()

Save each basic data in microtable object as local file.

Usage
microtable$save_table(dirpath = "basic_files", sep = ",", ...)
Arguments
dirpath

default "basic_files"; directory to save the tables, phylogenetic tree and sequences in microtable object. It will be created if not found.

sep

default ","; the field separator string, used to save tables. Same with sep parameter in write.table function. default ',' correspond to the file name suffix 'csv'. The option '\t' correspond to the file name suffix 'tsv'. For other options, suffix are all 'txt'.

...

parameters passed to write.table.

Examples
\dontrun{
m1$save_table()
}

Method cal_abund()

Calculate the taxonomic abundance at each taxonomic level or selected levels.

Usage
microtable$cal_abund(
  select_cols = NULL,
  rel = TRUE,
  merge_by = "|",
  split_group = FALSE,
  split_by = "&",
  split_column = NULL,
  split_special_char = "&&"
)
Arguments
select_cols

default NULL; numeric vector (column sequences) or character vector (column names of microtable$tax_table); applied to select columns to calculate abundances according to ordered hierarchical levels. This parameter is very useful when only part of the columns are needed to calculate abundances.

rel

default TRUE; if TRUE, relative abundance is used; if FALSE, absolute abundance (i.e. raw values) will be summed.

merge_by

default "|"; the symbol to merge and concatenate taxonomic names of different levels.

split_group

default FALSE; if TRUE, split the rows to multiple rows according to one or more columns in tax_table when there is multiple mapping information.

split_by

default "&"; Separator delimiting collapsed values; only available when split_group = TRUE.

split_column

default NULL; one column name used for the splitting in tax_table for each abundance calculation; only available when split_group = TRUE. If not provided, the function will split each column that containing the split_by character.

split_special_char

default "&&"; special character that will be used forcibly to split multiple mapping information in tax_table by default no matter split_group setting.

Returns

taxa_abund list in object.

Examples
\donttest{
m1$cal_abund()
}

Method save_abund()

Save taxonomic abundance as local file.

Usage
microtable$save_abund(
  dirpath = "taxa_abund",
  merge_all = FALSE,
  rm_un = FALSE,
  rm_pattern = "__$",
  sep = ",",
  ...
)
Arguments
dirpath

default "taxa_abund"; directory to save the taxonomic abundance files. It will be created if not found.

merge_all

default FALSE; Whether merge all tables into one. The merged file format is generally called 'mpa' style.

rm_un

default FALSE; Whether remove unclassified taxa in which the name ends with '__' generally.

rm_pattern

default "__$"; The pattern searched through the merged taxonomic names. See also pattern parameter in grepl function. Only available when rm_un = TRUE. The default "__$" means removing the names end with '__'.

sep

default ","; the field separator string. Same with sep parameter in write.table function. default ',' correspond to the file name suffix 'csv'. The option '\t' correspond to the file name suffix 'tsv'. For other options, suffix are all 'txt'.

...

parameters passed to write.table.

Examples
\dontrun{
m1$save_abund(dirpath = "taxa_abund")
m1$save_abund(merge_all = TRUE, rm_un = TRUE, sep = "\t")
}

Method cal_alphadiv()

Calculate alpha diversity.

Usage
microtable$cal_alphadiv(measures = NULL, PD = FALSE)
Arguments
measures

default NULL; one or more indexes in c("Observed", "Coverage", "Chao1", "ACE", "Shannon", "Simpson", "InvSimpson", "Fisher", "Pielou"); The default NULL represents that all the measures are calculated. 'Shannon', 'Simpson' and 'InvSimpson' are calculated based on vegan::diversity function; 'Chao1' and 'ACE' depend on the function vegan::estimateR. 'Fisher' index relies on the function vegan::fisher.alpha. "Observed" means the observed species number in a community, i.e. richness. "Coverage" represents good's coverage. It is defined:

Coverage=1f1nCoverage = 1 - \frac{f1}{n}

where n is the total abundance of a sample, and f1 is the number of singleton (species with abundance 1) in the sample. "Pielou" denotes the Pielou evenness index. It is defined:

J=Hln(S)J = \frac{H'}{\ln(S)}

where H' is Shannon index, and S is the species number.

PD

default FALSE; whether Faith's phylogenetic diversity is calculated. The calculation depends on the function picante::pd. Note that the phylogenetic tree (phylo_tree object in the data) is required for PD.

Returns

alpha_diversity stored in the object. The se.chao1 and se.ACE are the standard erros of Chao1 and ACE, respectively.

Examples
\donttest{
m1$cal_alphadiv(measures = NULL, PD = FALSE)
class(m1$alpha_diversity)
}

Method save_alphadiv()

Save alpha diversity table to the computer.

Usage
microtable$save_alphadiv(dirpath = "alpha_diversity")
Arguments
dirpath

default "alpha_diversity"; directory name to save the alpha_diversity.csv file.


Method cal_betadiv()

Calculate beta diversity dissimilarity matrix, such as Bray-Curtis, Jaccard, and UniFrac. See An et al. (2019) <doi:10.1016/j.geoderma.2018.09.035> and Lozupone et al. (2005) <doi:10.1128/AEM.71.12.8228–8235.2005>.

Usage
microtable$cal_betadiv(method = NULL, unifrac = FALSE, binary = FALSE, ...)
Arguments
method

default NULL; a character vector with one or more elements; c("bray", "jaccard") is used when method = NULL; See the method parameter in vegdist function for more available options, such as 'aitchison' and 'robust.aitchison'.

unifrac

default FALSE; whether UniFrac indexes (weighted and unweighted) are calculated. Phylogenetic tree is necessary when unifrac = TRUE.

binary

default FALSE; Whether convert abundance to binary data (presence/absence) when method is not "jaccard". TRUE is used for "jaccard" automatically.

...

parameters passed to vegdist function of vegan package.

Returns

beta_diversity list stored in the object.

Examples
\donttest{
m1$cal_betadiv(unifrac = FALSE)
class(m1$beta_diversity)
}

Method save_betadiv()

Save beta diversity matrix to the computer.

Usage
microtable$save_betadiv(dirpath = "beta_diversity")
Arguments
dirpath

default "beta_diversity"; directory name to save the beta diversity matrix files.


Method print()

Print the microtable object.

Usage
microtable$print()

Method clone()

The objects of this class are cloneable with this method.

Usage
microtable$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `microtable$new`
## ------------------------------------------------

data(otu_table_16S)
data(taxonomy_table_16S)
data(sample_info_16S)
data(phylo_tree_16S)
m1 <- microtable$new(otu_table = otu_table_16S)
m1 <- microtable$new(sample_table = sample_info_16S, otu_table = otu_table_16S, 
  tax_table = taxonomy_table_16S, phylo_tree = phylo_tree_16S)
# trim the files in the dataset
m1$tidy_dataset()

## ------------------------------------------------
## Method `microtable$filter_pollution`
## ------------------------------------------------

m1$filter_pollution(taxa = c("mitochondria", "chloroplast"))

## ------------------------------------------------
## Method `microtable$filter_taxa`
## ------------------------------------------------


d1 <- clone(m1)
d1$filter_taxa(rel_abund = 0.0001, freq = 0.2)


## ------------------------------------------------
## Method `microtable$rarefy_samples`
## ------------------------------------------------


m1$rarefy_samples(sample.size = min(m1$sample_sums()))


## ------------------------------------------------
## Method `microtable$tidy_dataset`
## ------------------------------------------------

m1$tidy_dataset(main_data = TRUE)

## ------------------------------------------------
## Method `microtable$add_rownames2taxonomy`
## ------------------------------------------------


m1$add_rownames2taxonomy()


## ------------------------------------------------
## Method `microtable$sample_sums`
## ------------------------------------------------


m1$sample_sums()


## ------------------------------------------------
## Method `microtable$taxa_sums`
## ------------------------------------------------


m1$taxa_sums()


## ------------------------------------------------
## Method `microtable$sample_names`
## ------------------------------------------------


m1$sample_names()


## ------------------------------------------------
## Method `microtable$taxa_names`
## ------------------------------------------------


m1$taxa_names()


## ------------------------------------------------
## Method `microtable$rename_taxa`
## ------------------------------------------------


m1$rename_taxa()


## ------------------------------------------------
## Method `microtable$merge_samples`
## ------------------------------------------------


m1$merge_samples("Group")


## ------------------------------------------------
## Method `microtable$merge_taxa`
## ------------------------------------------------


m1$merge_taxa(taxa = "Genus")


## ------------------------------------------------
## Method `microtable$save_table`
## ------------------------------------------------

## Not run: 
m1$save_table()

## End(Not run)

## ------------------------------------------------
## Method `microtable$cal_abund`
## ------------------------------------------------


m1$cal_abund()


## ------------------------------------------------
## Method `microtable$save_abund`
## ------------------------------------------------

## Not run: 
m1$save_abund(dirpath = "taxa_abund")
m1$save_abund(merge_all = TRUE, rm_un = TRUE, sep = "\t")

## End(Not run)

## ------------------------------------------------
## Method `microtable$cal_alphadiv`
## ------------------------------------------------


m1$cal_alphadiv(measures = NULL, PD = FALSE)
class(m1$alpha_diversity)


## ------------------------------------------------
## Method `microtable$cal_betadiv`
## ------------------------------------------------


m1$cal_betadiv(unifrac = FALSE)
class(m1$beta_diversity)

The OTU table of the 16S example data

Description

The OTU table of the 16S example data

Usage

data(otu_table_16S)

The OTU table of the ITS example data

Description

The OTU table of the ITS example data

Usage

data(otu_table_ITS)

The phylogenetic tree of 16S example data

Description

The phylogenetic tree of 16S example data

Usage

data(phylo_tree_16S)

The modified FAPROTAX trait database

Description

The modified FAPROTAX trait database

Usage

data(prok_func_FAPROTAX)

The modified NJC19 database

Description

The modified NJC19 database

Usage

data(prok_func_NJC19_list)

The sample information of 16S example data

Description

The sample information of 16S example data

Usage

data(sample_info_16S)

The sample information of ITS example data

Description

The sample information of ITS example data

Usage

data(sample_info_ITS)

The KEGG data files used in the trans_func class

Description

The KEGG data files used in the trans_func class

Usage

data(Tax4Fun2_KEGG)

The taxonomic information of 16S example data

Description

The taxonomic information of 16S example data

Usage

data(taxonomy_table_16S)

The taxonomic information of ITS example data

Description

The taxonomic information of ITS example data

Usage

data(taxonomy_table_ITS)

Clean up the taxonomic table to make taxonomic assignments consistent.

Description

Clean up the taxonomic table to make taxonomic assignments consistent.

Usage

tidy_taxonomy(
  taxonomy_table,
  column = "all",
  pattern = c(".*unassigned.*", ".*uncultur.*", ".*unknown.*", ".*unidentif.*",
    ".*unclassified.*", ".*No blast hit.*", ".*Incertae.sedis.*"),
  replacement = "",
  ignore.case = TRUE,
  na_fill = ""
)

Arguments

taxonomy_table

a data.frame with taxonomic information (rows are features; columns are taxonomic levels); or a microtable object with tax_table in it.

column

default "all"; "all" or a number; 'all' represents cleaning up all the columns; a number represents cleaning up this specific column.

pattern

default c(".*unassigned.*", ".*uncultur.*", ".*unknown.*", ".*unidentif.*", ".*unclassified.*", ".*No blast hit.*", ".*Incertae.sedis.*"); the characters (regular expressions) to be removed or replaced; removed when parameter replacement = "", replaced when parameter replacement has something; Note that the capital and small letters are not distinguished when ignore.case = TRUE.

replacement

default ""; the characters used to replace the character in pattern parameter.

ignore.case

default TRUE; if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored during matching.

na_fill

default ""; used to replace NA.

Format

data.frame object.

Value

data.frame

Examples

data("taxonomy_table_16S")
tidy_taxonomy(taxonomy_table_16S)

Create trans_abund object for taxonomic abundance visualization.

Description

This class is a wrapper for the taxonomic abundance transformations and visualization (e.g., bar plot, boxplot, heatmap, pie chart and line chart). The converted data style is the long-format for ggplot2 plot.

Methods

Public methods


Method new()

Usage
trans_abund$new(
  dataset = NULL,
  taxrank = "Phylum",
  show = 0,
  ntaxa = 10,
  groupmean = NULL,
  group_morestats = FALSE,
  delete_taxonomy_lineage = TRUE,
  delete_taxonomy_prefix = TRUE,
  prefix = NULL,
  use_percentage = TRUE,
  input_taxaname = NULL,
  high_level = NULL,
  high_level_fix_nsub = NULL
)
Arguments
dataset

default NULL; the object of microtable class.

taxrank

default "Phylum"; taxonomic level, i.e. a column name in tax_table of the input object. The function extracts the abundance from the taxa_abund list according to the names in the list. If the taxa_abund list is NULL, the function can automatically calculate the relative abundance to generate taxa_abund list.

show

default 0; the mean relative abundance threshold for filtering the taxa with low abundance.

ntaxa

default 10; how many taxa are selected to use. Taxa are ordered by abundance from high to low. This parameter does not conflict with the parameter show. Both can be used. ntaxa = NULL means the parameter will be invalid.

groupmean

default NULL; calculate mean abundance for each group. Select a column name in microtable$sample_table.

group_morestats

default FALSE; only available when groupmean parameter is provided; Whether output more statistics for each group, including min, max, median and quantile; Thereinto, quantile25 and quantile75 denote 25% and 75% quantiles, respectively.

delete_taxonomy_lineage

default TRUE; whether delete the taxonomy lineage in front of the target level.

delete_taxonomy_prefix

default TRUE; whether delete the prefix of taxonomy, such as "g__".

prefix

default NULL; character string; available when delete_taxonomy_prefix = T; default NULL represents using the "letter+__", e.g. "k__" for Phylum level; Please provide the customized prefix when it is not standard, otherwise the program can not correctly recognize it.

use_percentage

default TRUE; show the abundance percentage.

input_taxaname

default NULL; character vector; input taxa names to select some taxa.

high_level

default NULL; a taxonomic rank, such as "Phylum", used to add the taxonomic information of higher level. It is required for the legend with nested taxonomic levels in the bar plot or the higher taxonomic level in facets of y axis in the heatmap.

high_level_fix_nsub

default NULL; an integer, used to fix the number of selected abundant taxa in each taxon from higher taxonomic level. If the total number under one taxon of higher level is less than the high_level_fix_nsub, the total number will be used. When high_level_fix_nsub is provided, the taxa number of higher level is calculated as: ceiling(ntaxa/high_level_fix_nsub). Note that ntaxa means either the parameter ntaxa or the taxonomic number obtained by filtering according to the show parameter.

Returns

data_abund stored in the object. The column 'all_mean_abund' represents mean relative abundance across all the samples. So the values in one taxon are all same across all the samples. If the sum of column 'Abundance' in one sample is larger than 1, the 'Abundance', 'SD' and 'SE' has been multiplied by 100.

Examples
\donttest{
data(dataset)
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 10)
}

Method plot_bar()

Bar plot.

Usage
trans_abund$plot_bar(
  color_values = RColorBrewer::brewer.pal(8, "Dark2"),
  bar_full = TRUE,
  bar_type = deprecated(),
  others_color = "grey90",
  facet = NULL,
  order_x = NULL,
  x_axis_name = NULL,
  barwidth = NULL,
  use_alluvium = FALSE,
  clustering = FALSE,
  clustering_plot = FALSE,
  cluster_plot_width = 0.2,
  facet_color = "grey95",
  strip_text = 11,
  legend_text_italic = FALSE,
  xtext_angle = 0,
  xtext_size = 10,
  xtext_keep = TRUE,
  xtitle_keep = TRUE,
  ytitle_size = 17,
  coord_flip = FALSE,
  ggnested = FALSE,
  high_level_add_other = FALSE
)
Arguments
color_values

default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for the bars.

bar_full

default TRUE; Whether the bar shows all the features (including 'Others'). Default TRUE means total abundance are summed to 1 or 100 (percentage). FALSE means 'Others' will not be shown.

bar_type

deprecated. Please use bar_full argument instead.

others_color

default "grey90"; the color for "Others" taxa.

facet

default NULL; a character vector for the facet; group column name of sample_table, such as, "Group"; If multiple facets are needed, please provide ordered names, such as c("Group", "Type"). The latter should have a finer scale than the former one; Please adjust the facet orders in the plot by assigning factors in sample_table before creating trans_abund object or assigning factors in the data_abund table of trans_abund object. When multiple facets are used, please first install package ggh4x using the command install.packages("ggh4x").

order_x

default NULL; vector; used to order the sample names in x axis; must be the samples vector, such as c("S1", "S3", "S2").

x_axis_name

NULL; a character string; a column name of sample_table in dataset; used to show the sample names in x axis.

barwidth

default NULL; bar width, see width in geom_bar.

use_alluvium

default FALSE; whether add alluvium plot. If TRUE, please first install ggalluvial package.

clustering

default FALSE; whether order samples by the clustering.

clustering_plot

default FALSE; whether add clustering plot. If clustering_plot = TRUE, clustering will be also TRUE in any case for the clustering.

cluster_plot_width

default 0.2, the dendrogram plot width; available when clustering_plot = TRUE.

facet_color

default "grey95"; facet background color.

strip_text

default 11; facet text size.

legend_text_italic

default FALSE; whether use italic in legend.

xtext_angle

default 0; number ranging from 0 to 90; used to adjust x axis text angle to reduce text overlap;

xtext_size

default 10; x axis text size.

xtext_keep

default TRUE; whether retain x text.

xtitle_keep

default TRUE; whether retain x title.

ytitle_size

default 17; y axis title size.

coord_flip

default FALSE; whether flip cartesian coordinates so that horizontal becomes vertical, and vertical becomes horizontal.

ggnested

default FALSE; whether use nested legend. Need ggnested package to be installed (https://github.com/gmteunisse/ggnested). To make it available, please assign high_level parameter when creating the object.

high_level_add_other

default FALSE; whether add 'Others' (all the unknown taxa) in each taxon of higher taxonomic level. Only available when ggnested = TRUE.

Returns

ggplot2 object.

Examples
\donttest{
t1$plot_bar(facet = "Group", xtext_keep = FALSE)
}

Method plot_heatmap()

Plot the heatmap.

Usage
trans_abund$plot_heatmap(
  color_values = rev(RColorBrewer::brewer.pal(n = 11, name = "RdYlBu")),
  facet = NULL,
  facet_switch = "y",
  x_axis_name = NULL,
  order_x = NULL,
  withmargin = TRUE,
  plot_numbers = FALSE,
  plot_text_size = 4,
  plot_breaks = NULL,
  margincolor = "white",
  plot_colorscale = "log10",
  min_abundance = 0.01,
  max_abundance = NULL,
  strip_text = 11,
  xtext_size = 10,
  ytext_size = 11,
  xtext_keep = TRUE,
  xtitle_keep = TRUE,
  grid_clean = TRUE,
  xtext_angle = 0,
  legend_title = "% Relative\nAbundance",
  pheatmap = FALSE,
  ...
)
Arguments
color_values

default rev(RColorBrewer::brewer.pal(n = 11, name = "RdYlBu")); colors palette for the plotting.

facet

default NULL; a character vector for the facet; a group column name of sample_table, such as, "Group"; If multiple facets are needed, please provide ordered names, such as c("Group", "Type"). The latter should have a finer scale than the former one; Please adjust the facet orders in the plot by assigning factors in sample_table before creating trans_abund object or assigning factors in the data_abund table of trans_abund object. When multiple facets are used, please first install package ggh4x using the command install.packages("ggh4x").

facet_switch

default "y"; By default, the labels in facets are displayed on the top and right of the plot. If "x", the top labels will be displayed to the bottom. If "y", the right-hand side labels will be displayed to the left. Can also be set to "both". When the high_level is found in the object, the function will generate facets for the higher taxonomy in y axis. So the default "y" of the parameter is to make the visualization better when high_level is found. This parameter will be passed to the switch parameter in ggplot2::facet_grid or ggh4x::facet_nested function.

x_axis_name

NULL; a character string; a column name of sample_table used to show the sample names in x axis.

order_x

default NULL; vector; used to order the sample names in x axis; must be the samples vector, such as, c("S1", "S3", "S2").

withmargin

default TRUE; whether retain the tile margin.

plot_numbers

default FALSE; whether plot the number in heatmap.

plot_text_size

default 4; If plot_numbers TRUE, text size in plot.

plot_breaks

default NULL; The legend breaks.

margincolor

default "white"; If withmargin TRUE, use this as the margin color.

plot_colorscale

default "log10"; color scale.

min_abundance

default .01; the minimum abundance percentage in plot.

max_abundance

default NULL; the maximum abundance percentage in plot, NULL reprensent the max percentage.

strip_text

default 11; facet text size.

xtext_size

default 10; x axis text size.

ytext_size

default 11; y axis text size.

xtext_keep

default TRUE; whether retain x text.

xtitle_keep

default TRUE; whether retain x title.

grid_clean

default TRUE; whether remove grid lines.

xtext_angle

default 0; number ranging from 0 to 90; used to adjust x axis text angle to reduce text overlap;

legend_title

default "% Relative\nAbundance"; legend title text.

pheatmap

default FALSE; whether use pheatmap package to plot the heatmap.

...

paremeters pass to pheatmap when pheatmap = TRUE.

Returns

ggplot2 object or grid object based on pheatmap.

Examples
\donttest{
t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 40)
t1$plot_heatmap(facet = "Group", xtext_keep = FALSE, withmargin = FALSE)
}

Method plot_box()

Box plot.

Usage
trans_abund$plot_box(
  color_values = RColorBrewer::brewer.pal(8, "Dark2"),
  group = NULL,
  show_point = FALSE,
  point_color = "black",
  point_size = 3,
  point_alpha = 0.3,
  plot_flip = FALSE,
  boxfill = TRUE,
  middlecolor = "grey95",
  middlesize = 1,
  xtext_angle = 0,
  xtext_size = 10,
  ytitle_size = 17,
  ...
)
Arguments
color_values

default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for the box.

group

default NULL; a column name of sample table to show abundance across groups.

show_point

default FALSE; whether show points in plot.

point_color

default "black"; If show_point TRUE; use the color

point_size

default 3; If show_point TRUE; use the size

point_alpha

default .3; If show_point TRUE; use the transparency.

plot_flip

default FALSE; Whether rotate plot.

boxfill

default TRUE; Whether fill the box with colors.

middlecolor

default "grey95"; The middle line color.

middlesize

default 1; The middle line size.

xtext_angle

default 0; number ranging from 0 to 90; used to adjust x axis text angle to reduce text overlap;

xtext_size

default 10; x axis text size.

ytitle_size

default 17; y axis title size.

...

parameters pass to geom_boxplot function.

Returns

ggplot2 object.

Examples
\donttest{
t1$plot_box(group = "Group")
}

Method plot_line()

Plot the line chart.

Usage
trans_abund$plot_line(
  color_values = RColorBrewer::brewer.pal(8, "Dark2"),
  plot_SE = TRUE,
  position = position_dodge(0.1),
  errorbar_size = 1,
  errorbar_width = 0.1,
  point_size = 3,
  point_alpha = 0.8,
  line_size = 0.8,
  line_alpha = 0.8,
  line_type = 1,
  xtext_angle = 0,
  xtext_size = 10,
  ytitle_size = 17
)
Arguments
color_values

default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for the points and lines.

plot_SE

default TRUE; TRUE: the errorbar is mean±semean±se; FALSE: the errorbar is mean±sdmean±sd.

position

default position_dodge(0.1); Position adjustment, either as a string (such as "identity"), or the result of a call to a position adjustment function.

errorbar_size

default 1; errorbar line size.

errorbar_width

default 0.1; errorbar width.

point_size

default 3; point size for taxa.

point_alpha

default 0.8; point transparency.

line_size

default 0.8; line size.

line_alpha

default 0.8; line transparency.

line_type

default 1; an integer; line type.

xtext_angle

default 0; number ranging from 0 to 90; used to adjust x axis text angle to reduce text overlap;

xtext_size

default 10; x axis text size.

ytitle_size

default 17; y axis title size.

Returns

ggplot2 object.

Examples
\donttest{
t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 5)
t1$plot_line(point_size = 3)
t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 5, groupmean = "Group")
t1$plot_line(point_size = 5, errorbar_size = 1, xtext_angle = 30)
}

Method plot_pie()

Pie chart.

Usage
trans_abund$plot_pie(
  color_values = RColorBrewer::brewer.pal(8, "Dark2"),
  facet_nrow = 1,
  strip_text = 11,
  add_label = FALSE,
  legend_text_italic = FALSE
)
Arguments
color_values

default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for each section.

facet_nrow

default 1; how many rows in the plot.

strip_text

default 11; sample title size.

add_label

default FALSE; Whether add the percentage label in each section of pie chart.

legend_text_italic

default FALSE; whether use italic in legend.

Returns

ggplot2 object.

Examples
\donttest{
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_pie(facet_nrow = 1)
}

Method plot_donut()

Donut chart based on the ggpubr::ggdonutchart function.

Usage
trans_abund$plot_donut(
  color_values = RColorBrewer::brewer.pal(8, "Dark2"),
  label = TRUE,
  facet_nrow = 1,
  legend_text_italic = FALSE,
  ...
)
Arguments
color_values

default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for the donut.

label

default TRUE; whether show the percentage label.

facet_nrow

default 1; how many rows in the plot.

legend_text_italic

default FALSE; whether use italic in legend.

...

parameters passed to ggpubr::ggdonutchart.

Returns

combined ggplot2 objects list, generated by ggpubr::ggarrange function.

Examples
\dontrun{
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_donut(label = TRUE)
}

Method plot_radar()

Radar chart based on the ggradar package (https://github.com/ricardo-bion/ggradar).

Usage
trans_abund$plot_radar(
  color_values = RColorBrewer::brewer.pal(8, "Dark2"),
  ...
)
Arguments
color_values

default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for samples.

...

parameters passed to ggradar::ggradar function except group.colours parameter.

Returns

ggplot2 object.

Examples
\dontrun{
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_radar()
}

Method plot_tern()

Ternary diagrams based on the ggtern package.

Usage
trans_abund$plot_tern(
  color_values = RColorBrewer::brewer.pal(8, "Dark2"),
  color_legend_guide_size = 4
)
Arguments
color_values

default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for the samples.

color_legend_guide_size

default 4; The size of legend guide for color.

Returns

ggplot2 object.

Examples
\dontrun{
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_tern()
}

Method print()

Print the trans_abund object.

Usage
trans_abund$print()

Method clone()

The objects of this class are cloneable with this method.

Usage
trans_abund$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `trans_abund$new`
## ------------------------------------------------


data(dataset)
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 10)


## ------------------------------------------------
## Method `trans_abund$plot_bar`
## ------------------------------------------------


t1$plot_bar(facet = "Group", xtext_keep = FALSE)


## ------------------------------------------------
## Method `trans_abund$plot_heatmap`
## ------------------------------------------------


t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 40)
t1$plot_heatmap(facet = "Group", xtext_keep = FALSE, withmargin = FALSE)


## ------------------------------------------------
## Method `trans_abund$plot_box`
## ------------------------------------------------


t1$plot_box(group = "Group")


## ------------------------------------------------
## Method `trans_abund$plot_line`
## ------------------------------------------------


t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 5)
t1$plot_line(point_size = 3)
t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 5, groupmean = "Group")
t1$plot_line(point_size = 5, errorbar_size = 1, xtext_angle = 30)


## ------------------------------------------------
## Method `trans_abund$plot_pie`
## ------------------------------------------------


t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_pie(facet_nrow = 1)


## ------------------------------------------------
## Method `trans_abund$plot_donut`
## ------------------------------------------------

## Not run: 
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_donut(label = TRUE)

## End(Not run)

## ------------------------------------------------
## Method `trans_abund$plot_radar`
## ------------------------------------------------

## Not run: 
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_radar()

## End(Not run)

## ------------------------------------------------
## Method `trans_abund$plot_tern`
## ------------------------------------------------

## Not run: 
t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group")
t1$plot_tern()

## End(Not run)

Create trans_alpha object for alpha diversity statistics and visualization.

Description

This class is a wrapper for a series of alpha diversity analysis, including the statistics and visualization.

Methods

Public methods


Method new()

Usage
trans_alpha$new(
  dataset = NULL,
  group = NULL,
  by_group = NULL,
  by_ID = NULL,
  order_x = NULL
)
Arguments
dataset

microtable object.

group

default NULL; a column name of sample_table in the input microtable object used for the statistics across groups.

by_group

default NULL; a column name of sample_table used to perform the differential test among groups (from group parameter) for each group (from by_group parameter) separately.

by_ID

default NULL; a column name of sample_table used to perform paired T test or paired Wilcoxon test for the paired data, such as continuous sampling of individual animals or plant compartments for different plant species (ID). So by_ID in sample_table should be the smallest unit of sample collection without any repetition in it. When the by_ID parameter is provided, the function can automatically perform paired test, and no more parameters is required.

order_x

default NULL; a column name of sample_table or a vector with sample names. If provided, sort samples using factor.

Returns

data_alpha and data_stat stored in the object.

Examples
\donttest{
data(dataset)
t1 <- trans_alpha$new(dataset = dataset, group = "Group")
}

Method cal_diff()

Differential test on alpha diversity.

Usage
trans_alpha$cal_diff(
  measure = NULL,
  method = c("KW", "KW_dunn", "wilcox", "t.test", "anova", "scheirerRayHare", "lm",
    "lme", "betareg", "glmm", "glmm_beta")[1],
  formula = NULL,
  p_adjust_method = "fdr",
  KW_dunn_letter = TRUE,
  alpha = 0.05,
  anova_post_test = "duncan.test",
  anova_varequal_test = FALSE,
  return_model = FALSE,
  ...
)
Arguments
measure

default NULL; character vector; If NULL, all indexes will be used; see names of microtable$alpha_diversity, e.g. c("Observed", "Chao1", "Shannon").

method

default "KW"; see the following available options:

'KW'

Kruskal-Wallis Rank Sum Test for all groups (>= 2)

'KW_dunn'

Dunn's Kruskal-Wallis Multiple Comparisons <10.1080/00401706.1964.10490181> based on dunnTest function in FSA package

'wilcox'

Wilcoxon Rank Sum Test for all paired groups When by_ID parameter is provided in creating the object of the class, paired Wilcoxon test will be performed.

't.test'

Student's t-Test for all paired groups. When by_ID parameter is provided in creating the object of the class, paired t-test will be performed.

'anova'

Variance analysis. For one-way anova, the default post hoc test is Duncan's new multiple range test. Please use anova_post_test parameter to change the post hoc method. For multi-way anova, Please use formula parameter to specify the model and see aov for more details

'scheirerRayHare'

Scheirer-Ray-Hare test (nonparametric test) for a two-way factorial experiment; see scheirerRayHare function of rcompanion package

'lm'

Linear Model based on the lm function

'lme'

Linear Mixed Effect Model based on the lmerTest package

'betareg'

Beta Regression for Rates and Proportions based on the betareg package

'glmm'

Generalized linear mixed model (GLMM) based on the glmmTMB package. A family function can be provided using parameter passing, such as: family = glmmTMB::lognormal(link = "log")

'glmm_beta'

Generalized linear mixed model (GLMM) with a family function of beta distribution. This is an extension of the GLMM model in 'glmm' option. The only difference is in glmm_beta the family function is fixed with the beta distribution function, facilitating the fitting for proportional data (ranging from 0 to 1). The link function is fixed with "logit".

formula

default NULL; applied to two-way or multi-factor analysis when method is "anova", "scheirerRayHare", "lm", "lme", "betareg" or "glmm"; specified set for independent variables, i.e. the latter part of a general formula, such as 'block + N*P*K'.

p_adjust_method

default "fdr" (for "KW", "wilcox", "t.test" methods) or "holm" (for "KW_dunn"); P value adjustment method; For method = 'KW', 'wilcox' or 't.test', please see method parameter of p.adjust function for available options; For method = 'KW_dunn', please see dunn.test::p.adjustment.methods for available options.

KW_dunn_letter

default TRUE; For method = 'KW_dunn', TRUE denotes significances are presented by letters; FALSE means significances are shown by asterisk for paired comparison.

alpha

default 0.05; Significant level; used for generating significance letters when method is 'anova' or 'KW_dunn'.

anova_post_test

default "duncan.test". The post hoc test method for one-way anova. The default option represents the Duncan's new multiple range test. Other available options include "LSD.test" (LSD post hoc test) and "HSD.test" (HSD post hoc test). All those are the function names from agricolae package.

anova_varequal_test

default FALSE; whether conduct Levene's Test for equality of variances. Only available for one-way anova. Significant P value means the variance among groups is not equal.

return_model

default FALSE; whether return the original "lm", "lmer" or "glmm" model list in the object.

...

parameters passed to kruskal.test (when method = "KW") or wilcox.test function (when method = "wilcox") or dunnTest function of FSA package (when method = "KW_dunn") or agricolae::duncan.test/agricolae::LSD.test/agricolae::HSD.test (when method = "anova", one-way anova) or rcompanion::scheirerRayHare (when method = "scheirerRayHare") or stats::lm (when method = "lm") or lmerTest::lmer (when method = "lme") or betareg::betareg (when method = "betareg") or glmmTMB::glmmTMB (when method = "glmm").

Returns

res_diff, stored in object with the format data.frame.
When method is "betareg", "lm", "lme" or "glmm", "Estimate" and "Std.Error" columns represent the fitted coefficient and its standard error, respectively.

Examples
\donttest{
t1$cal_diff(method = "KW")
t1$cal_diff(method = "anova")
t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group")
t1$cal_diff(method = "anova")
}

Method plot_alpha()

Plot the alpha diversity. Box plot (and others for visualizing data in groups of single factor) is used for the visualization of alpha diversity when the group is found in the object. When the formula is found in the res_diff table in the object, heatmap is employed automatically to show the significances of differential test for multiple indexes, and errorbar (coefficient and standard errors) can be used for single index.

Usage
trans_alpha$plot_alpha(
  plot_type = "ggboxplot",
  color_values = RColorBrewer::brewer.pal(8, "Dark2"),
  measure = "Shannon",
  group = NULL,
  add = NULL,
  add_sig = TRUE,
  add_sig_label = "Significance",
  add_sig_text_size = 3.88,
  add_sig_label_num_dec = 4,
  order_x_mean = FALSE,
  y_start = 0.1,
  y_increase = 0.05,
  xtext_angle = 30,
  xtext_size = 13,
  ytitle_size = 17,
  bar_width = 0.9,
  bar_alpha = 0.8,
  dodge_width = 0.9,
  plot_SE = TRUE,
  errorbar_size = 1,
  errorbar_width = 0.2,
  errorbar_addpoint = TRUE,
  errorbar_color_black = FALSE,
  point_size = 3,
  point_alpha = 0.8,
  add_line = FALSE,
  line_size = 0.8,
  line_type = 2,
  line_color = "grey50",
  line_alpha = 0.5,
  heatmap_cell = "P.unadj",
  heatmap_sig = "Significance",
  heatmap_x = "Factors",
  heatmap_y = "Measure",
  heatmap_lab_fill = "P value",
  coefplot_sig_pos = 2,
  ...
)
Arguments
plot_type

default "ggboxplot"; plot type; available options include "ggboxplot", "ggdotplot", "ggviolin", "ggstripchart", "ggerrorplot", "errorbar" and "barerrorbar". The options starting with "gg" are function names coming from ggpubr package. All those methods with ggpubr package use the data_alpha table in the object. "errorbar" represents Mean±SD or Mean±SE plot based on ggplot2 package by invoking the data_stat table in the object. "barerrorbar" denotes "bar plot + error bar". It is similar with "errorbar" and has a bar plot.

color_values

default RColorBrewer::brewer.pal(8, "Dark2"); color pallete for groups.

measure

default "Shannon"; one alpha diversity index in the object.

group

default NULL; group name used for the plot.

add

default NULL; add another plot element; passed to the add parameter of the function (e.g., ggboxplot) from ggpubr package when plot_type starts with "gg" (functions coming from ggpubr package).

add_sig

default TRUE; whether add significance label using the result of cal_diff function, i.e. object$res_diff; This is manily designed to add post hoc test of anova or other significances to make the label mapping easy.

add_sig_label

default "Significance"; select a colname of object$res_diff for the label text when 'Letter' is not in the table, such as 'P.adj' or 'Significance'.

add_sig_text_size

default 3.88; the size of text in added label.

add_sig_label_num_dec

default 4; reserved decimal places when the parameter add_sig_label use numeric column, like 'P.adj'.

order_x_mean

default FALSE; whether order x axis by the means of groups from large to small.

y_start

default 0.1; the y axis value from which to add the significance asterisk label; the default 0.1 means max(values) + 0.1 * (max(values) - min(values)).

y_increase

default 0.05; the increasing y axia space to add the label (asterisk or letter); the default 0.05 means 0.05 * (max(values) - min(values)); this parameter is also used to label the letters of anova result with the fixed space.

xtext_angle

default 30; number (e.g. 30). Angle of text in x axis.

xtext_size

default 13; x axis text size. NULL means the default size in ggplot2.

ytitle_size

default 17; y axis title size.

bar_width

default 0.9; the bar width when plot_type = "barerrorbar".

bar_alpha

default 0.8; the alpha of bar color when plot_type = "barerrorbar".

dodge_width

default 0.9; the dodge width used in position_dodge function of ggplot2 package when plot_type is "errorbar" or "barerrorbar".

plot_SE

default TRUE; TRUE: the errorbar is mean±semean±se; FALSE: the errorbar is mean±sdmean±sd. Available when plot_type is "errorbar" or "barerrorbar".

errorbar_size

default 1; errorbar size. Available when plot_type is "errorbar" or "barerrorbar".

errorbar_width

default 0.2; errorbar width. Available when plot_type is "errorbar" or "barerrorbar" and by_group is NULL.

errorbar_addpoint

default TRUE; whether add point for mean. Available when plot_type is "errorbar" or "barerrorbar" and by_group is NULL.

errorbar_color_black

default FALSE; whether use black for the color of errorbar when plot_type is "errorbar" or "barerrorbar".

point_size

default 3; point size for taxa. Available when plot_type is "errorbar" or "barerrorbar".

point_alpha

default 0.8; point transparency. Available when plot_type is "errorbar" or "barerrorbar".

add_line

default FALSE; whether add line. Available when plot_type is "errorbar" or "barerrorbar".

line_size

default 0.8; line size when add_line = TRUE. Available when plot_type is "errorbar" or "barerrorbar".

line_type

default 2; an integer; line type when add_line = TRUE. The available case is same with line_size.

line_color

default "grey50"; line color when add_line = TRUE. Available when by_group is NULL. Other available case is same with line_size.

line_alpha

default 0.5; line transparency when add_line = TRUE. The available case is same with line_size.

heatmap_cell

default "P.unadj"; the column of res_diff table for the cell of heatmap when formula with multiple factors is found in the method.

heatmap_sig

default "Significance"; the column of res_diff for the significance label of heatmap.

heatmap_x

default "Factors"; the column of res_diff for the x axis of heatmap.

heatmap_y

default "Taxa"; the column of res_diff for the y axis of heatmap.

heatmap_lab_fill

default "P value"; legend title of heatmap.

coefplot_sig_pos

default 2; Significance label position in the coefficient point and errorbar plot. The formula is Estimate + coefplot_sig_pos * Std.Error. This plot is used when there is only one measure found in the table, and 'Estimate' and 'Std.Error' are both in the column names (such as for lm and lme methods). The x axis is 'Estimate', and y axis denotes 'Factors'. When coefplot_sig_pos is a negative value, the label is in the left of the errorbar. Errorbar size and width in the coefficient point plot can be adjusted with the parameters errorbar_size and errorbar_width. Point size and alpha can be adjusted with parameters point_size and point_alpha. The significance label size can be adjusted with parameter add_sig_text_size. Furthermore, the vertical line around 0 can be adjusted with parameters line_size, line_type, line_color and line_alpha.

...

parameters passing to ggpubr::ggboxplot function (or other functions shown by plot_type parameter when it starts with "gg") or plot_cor function in trans_env class for the heatmap of multiple factors when formula is found in the res_diff of the object.

Returns

ggplot.

Examples
\donttest{
t1 <- trans_alpha$new(dataset = dataset, group = "Group")
t1$cal_diff(method = "wilcox")
t1$plot_alpha(measure = "Shannon", add_sig = TRUE)
t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group")
t1$cal_diff(method = "wilcox")
t1$plot_alpha(measure = "Shannon", add_sig = TRUE)
}

Method print()

Print the trans_alpha object.

Usage
trans_alpha$print()

Method clone()

The objects of this class are cloneable with this method.

Usage
trans_alpha$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `trans_alpha$new`
## ------------------------------------------------


data(dataset)
t1 <- trans_alpha$new(dataset = dataset, group = "Group")


## ------------------------------------------------
## Method `trans_alpha$cal_diff`
## ------------------------------------------------


t1$cal_diff(method = "KW")
t1$cal_diff(method = "anova")
t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group")
t1$cal_diff(method = "anova")


## ------------------------------------------------
## Method `trans_alpha$plot_alpha`
## ------------------------------------------------


t1 <- trans_alpha$new(dataset = dataset, group = "Group")
t1$cal_diff(method = "wilcox")
t1$plot_alpha(measure = "Shannon", add_sig = TRUE)
t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group")
t1$cal_diff(method = "wilcox")
t1$plot_alpha(measure = "Shannon", add_sig = TRUE)

Create trans_beta object for beta-diversity analysis

Description

This class is a wrapper for a series of beta-diversity related analysis, including ordination analysis based on An et al. (2019) <doi:10.1016/j.geoderma.2018.09.035>, group distance comparision, clustering, perMANOVA based on Anderson al. (2008) <doi:10.1111/j.1442-9993.2001.01070.pp.x>, ANOSIM and PERMDISP. Note that the beta diversity analysis methods related with environmental variables are encapsulated within the trans_env class.

Methods

Public methods


Method new()

Usage
trans_beta$new(dataset = NULL, measure = NULL, group = NULL)
Arguments
dataset

the object of microtable class.

measure

default NULL; a matrix name stored in microtable$beta_diversity list, such as "bray" or "jaccard", or a customized matrix; used for ordination, manova, group distance comparision, etc.; Please see cal_betadiv function of microtable class for more details.

group

default NULL; sample group used for manova, betadisper or group distance comparision.

Returns

measure, group and dataset stored in the object.

Examples
data(dataset)
t1 <- trans_beta$new(dataset = dataset, measure = "bray", group = "Group")

Method cal_ordination()

Unconstrained ordination.

Usage
trans_beta$cal_ordination(
  method = "PCoA",
  ncomp = 3,
  trans = FALSE,
  scale_species = FALSE,
  scale_species_ratio = 0.8,
  orthoI = NA,
  ordination = deprecated(),
  ...
)
Arguments
method

default "PCoA"; "PCoA", "NMDS", "PCA", "DCA", "PLS-DA" or "OPLS-DA". PCoA: principal coordinates analysis; NMDS: non-metric multidimensional scaling, PCA: principal component analysis; DCA: detrended correspondence analysis; PLS-DA: partial least squares discriminant analysis; OPLS-DA: orthogonal partial least squares discriminant analysis. For the methods details, please refer to the papers <doi:10.1111/j.1574-6941.2007.00375.x> (for PCoA, NMDS, PCA and DCA) and <doi:10.1186/s12859-019-3310-7> (for PLS-DA or OPLS-DA).

ncomp

default 3; dimensions shown in the results (except method "NMDS").

trans

default FALSE; whether species abundance will be square transformed; only available when method is "PCA" or "DCA".

scale_species

default FALSE; whether species loading in PCA or DCA is scaled.

scale_species_ratio

default 0.8; the ratio to scale up the loading; multiply by the maximum distance between samples and origin. Only available when scale_species = TURE.

orthoI

default NA; number of orthogonal components (for OPLS-DA only). Default NA means the number of orthogonal components is automatically computed. Please also see orthoI parameter in opls function of ropls package.

ordination

deprecated. Please use method argument instead.

...

parameters passed to vegan::rda function when method = "PCA", or vegan::decorana function when method = "DCA", or ape::pcoa function when method = "PCoA", or vegan::metaMDS function when method = "NMDS", or ropls::opls function when method = "PLS-DA" or method = "OPLS-DA" .

Returns

res_ordination stored in the object.

Examples
t1$cal_ordination(method = "PCoA")

Method plot_ordination()

Plot the ordination result.

Usage
trans_beta$plot_ordination(
  plot_type = "point",
  color_values = RColorBrewer::brewer.pal(8, "Dark2"),
  shape_values = c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14),
  plot_color = NULL,
  plot_shape = NULL,
  plot_group_order = NULL,
  add_sample_label = NULL,
  point_size = 3,
  point_alpha = 0.8,
  centroid_segment_alpha = 0.6,
  centroid_segment_size = 1,
  centroid_segment_linetype = 3,
  ellipse_chull_fill = TRUE,
  ellipse_chull_alpha = 0.1,
  ellipse_level = 0.9,
  ellipse_type = "t",
  NMDS_stress_pos = c(1, 1),
  NMDS_stress_text_prefix = "",
  loading_arrow = FALSE,
  loading_taxa_num = 10,
  loading_text_color = "black",
  loading_arrow_color = "grey30",
  loading_text_size = 3,
  loading_text_italic = FALSE
)
Arguments
plot_type

default "point"; one or more elements of "point", "ellipse", "chull" and "centroid".

'point'

add sample points

'ellipse'

add confidence ellipse for points of each group

'chull'

add convex hull for points of each group

'centroid'

add centroid line of each group

color_values

default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for different groups.

shape_values

default c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14); a vector for point shape types of groups, see ggplot2 tutorial.

plot_color

default NULL; a colname of sample_table to assign colors to different groups in plot.

plot_shape

default NULL; a colname of sample_table to assign shapes to different groups in plot.

plot_group_order

default NULL; a vector used to order the groups in the legend of plot.

add_sample_label

default NULL; a column name in sample_table; If provided, show the point name in plot.

point_size

default 3; point size when "point" is in plot_type parameter.

point_alpha

default .8; point transparency in plot when "point" is in plot_type parameter.

centroid_segment_alpha

default 0.6; segment transparency in plot when "centroid" is in plot_type parameter.

centroid_segment_size

default 1; segment size in plot when "centroid" is in plot_type parameter.

centroid_segment_linetype

default 3; the line type related with centroid in plot when "centroid" is in plot_type parameter.

ellipse_chull_fill

default TRUE; whether fill colors to the area of ellipse or chull.

ellipse_chull_alpha

default 0.1; color transparency in the ellipse or convex hull depending on whether "ellipse" or "centroid" is in plot_type parameter.

ellipse_level

default .9; confidence level of ellipse when "ellipse" is in plot_type parameter.

ellipse_type

default "t"; ellipse type when "ellipse" is in plot_type parameter; see type in stat_ellipse.

NMDS_stress_pos

default c(1, 1); a numerical vector with two values used to represent the insertion position of the stress text. The first one denotes the x-axis, while the second one corresponds to the y-axis. The assigned position is determined by multiplying the respective value with the maximum point on the corresponding coordinate axis. Thus, the x-axis position is equal to max(points of x axis) * NMDS_stress_pos[1], and the y-axis position is equal to max(points of y axis) * NMDS_stress_pos[2]. Negative values can also be utilized for the negative part of the axis. NMDS_stress_pos = NULL denotes no stress text to show.

NMDS_stress_text_prefix

default ""; If NMDS_stress_pos is not NULL, this parameter can be used to add text in front of the stress value.

loading_arrow

default FALSE; whether show the loading using arrow.

loading_taxa_num

default 10; the number of taxa used for the loading. Only available when loading_arrow = TRUE.

loading_text_color

default "black"; the color of taxa text. Only available when loading_arrow = TRUE.

loading_arrow_color

default "grey30"; the color of taxa arrow. Only available when loading_arrow = TRUE.

loading_text_size

default 3; the size of taxa text. Only available when loading_arrow = TRUE.

loading_text_italic

default FALSE; whether using italic for the taxa text. Only available when loading_arrow = TRUE.

Returns

ggplot.

Examples
t1$plot_ordination(plot_type = "point")
t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = "point")
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "ellipse"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"), 
	  centroid_segment_linetype = 1)

Method cal_manova()

Calculate perMANOVA (Permutational Multivariate Analysis of Variance) based on the adonis2 function of vegan package <doi:10.1111/j.1442-9993.2001.01070.pp.x>.

Usage
trans_beta$cal_manova(
  manova_all = TRUE,
  manova_set = NULL,
  group = NULL,
  by_group = NULL,
  p_adjust_method = "fdr",
  by = "terms",
  permutations = 999,
  ...
)
Arguments
manova_all

default TRUE; TRUE represents test for all the groups, i.e. the overall test; FALSE represents test for all the paired groups.

manova_set

default NULL; other specified group set for manova, such as "Group + Type" and "Group*Type". Please also see the formula parameter (only right-hand side) in adonis2 function of vegan package. The parameter manova_set has higher priority than manova_all parameter. If manova_set is provided; manova_all is disabled.

group

default NULL; a column name of sample_table used for manova. If NULL, search group variable stored in the object. Available when manova_set is not provided.

by_group

default NULL; one column name in sample_table; used to perform paired comparisions within each group. Only available when manova_all = FALSE and manova_set is not provided.

p_adjust_method

default "fdr"; p.adjust method; available when manova_all = FALSE; see method parameter of p.adjust function for available options.

by

default "terms"; same with the by parameter in adonis2 function of vegan package.

permutations

default 999; same with the permutations parameter in adonis2 function of vegan package.

...

parameters passed to adonis2 function of vegan package.

Returns

res_manova stored in object with data.frame class.

Examples
t1$cal_manova(manova_all = TRUE)

Method cal_anosim()

Analysis of similarities (ANOSIM) based on the anosim function of vegan package.

Usage
trans_beta$cal_anosim(
  paired = FALSE,
  group = NULL,
  by_group = NULL,
  p_adjust_method = "fdr",
  permutations = 999,
  ...
)
Arguments
paired

default FALSE; whether perform paired test between any two combined groups from all the input groups.

group

default NULL; a column name of sample_table. If NULL, search group variable stored in the object.

by_group

default NULL; one column name in sample_table; used to perform paired comparisions within each group. Only available when paired = TRUE.

p_adjust_method

default "fdr"; p.adjust method; available when paired = TRUE; see method parameter of p.adjust function for available options.

permutations

default 999; same with the permutations parameter in anosim function of vegan package.

...

parameters passed to anosim function of vegan package.

Returns

res_anosim stored in object with data.frame class.

Examples
t1$cal_anosim()

Method cal_betadisper()

Multivariate homogeneity test of groups dispersions (PERMDISP) based on betadisper function in vegan package.

Usage
trans_beta$cal_betadisper(...)
Arguments
...

parameters passed to betadisper function.

Returns

res_betadisper stored in object.

Examples
t1$cal_betadisper()

Method cal_group_distance()

Convert symmetric distance matrix to distance table of paired samples that are within groups or between groups.

Usage
trans_beta$cal_group_distance(
  within_group = TRUE,
  by_group = NULL,
  ordered_group = NULL,
  sep = " vs "
)
Arguments
within_group

default TRUE; whether obtain distance table of paired samples within groups; if FALSE, obtain distances of paired samples between any two groups.

by_group

default NULL; one colname name of sample_table in microtable object. If provided, transform distances by the provided by_group parameter. This is especially useful for ordering and filtering values further. When within_group = TRUE, the result of by_group parameter is the format of paired groups. When within_group = FALSE, the result of by_group parameter is the format same with the group information in sample_table.

ordered_group

default NULL; a vector representing the ordered elements of group parameter; only useful when within_group = FALSE.

sep

default TRUE; a character string to separate the group names after merging them into a new name.

Returns

res_group_distance stored in object.

Examples
\donttest{
t1$cal_group_distance(within_group = TRUE)
}

Method cal_group_distance_diff()

Differential test of converted distances across groups.

Usage
trans_beta$cal_group_distance_diff(
  group = NULL,
  by_group = NULL,
  by_ID = NULL,
  ...
)
Arguments
group

default NULL; a column name of object$res_group_distance used for the statistics; If NULL, use the group inside the object.

by_group

default NULL; a column of object$res_group_distance used to perform the differential test among elements in group parameter for each element in by_group parameter. So by_group has a larger scale than group parameter. This by_group is very different from the by_group parameter in the cal_group_distance function.

by_ID

default NULL; a column of object$res_group_distance used to perform paired t test or paired wilcox test for the paired data, such as the data of plant compartments for different plant species (ID). So by_ID should be the smallest unit of sample collection without any repetition in it.

...

parameters passed to cal_diff function of trans_alpha class.

Returns

res_group_distance_diff stored in object.

Examples
\donttest{
t1$cal_group_distance_diff()
}

Method plot_group_distance()

Plot the distances of paired groups within or between groups.

Usage
trans_beta$plot_group_distance(plot_group_order = NULL, ...)
Arguments
plot_group_order

default NULL; a vector used to order the groups in the plot.

...

parameters (except measure) passed to plot_alpha function of trans_alpha class.

Returns

ggplot.

Examples
\donttest{
t1$plot_group_distance()
}

Method plot_clustering()

Plot clustering result based on the ggdendro package.

Usage
trans_beta$plot_clustering(
  color_values = RColorBrewer::brewer.pal(8, "Dark2"),
  measure = NULL,
  group = NULL,
  replace_name = NULL
)
Arguments
color_values

default RColorBrewer::brewer.pal(8, "Dark2"); color palette for the text.

measure

default NULL; beta diversity index; If NULL, using the measure when creating object

group

default NULL; if provided, use this group to assign color.

replace_name

default NULL; if provided, use this as label.

Returns

ggplot.

Examples
t1$plot_clustering(group = "Group", replace_name = c("Saline", "Type"))

Method clone()

The objects of this class are cloneable with this method.

Usage
trans_beta$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `trans_beta$new`
## ------------------------------------------------

data(dataset)
t1 <- trans_beta$new(dataset = dataset, measure = "bray", group = "Group")

## ------------------------------------------------
## Method `trans_beta$cal_ordination`
## ------------------------------------------------

t1$cal_ordination(method = "PCoA")

## ------------------------------------------------
## Method `trans_beta$plot_ordination`
## ------------------------------------------------

t1$plot_ordination(plot_type = "point")
t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = "point")
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "ellipse"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"), 
	  centroid_segment_linetype = 1)

## ------------------------------------------------
## Method `trans_beta$cal_manova`
## ------------------------------------------------

t1$cal_manova(manova_all = TRUE)

## ------------------------------------------------
## Method `trans_beta$cal_anosim`
## ------------------------------------------------

t1$cal_anosim()

## ------------------------------------------------
## Method `trans_beta$cal_betadisper`
## ------------------------------------------------

t1$cal_betadisper()

## ------------------------------------------------
## Method `trans_beta$cal_group_distance`
## ------------------------------------------------


t1$cal_group_distance(within_group = TRUE)


## ------------------------------------------------
## Method `trans_beta$cal_group_distance_diff`
## ------------------------------------------------


t1$cal_group_distance_diff()


## ------------------------------------------------
## Method `trans_beta$plot_group_distance`
## ------------------------------------------------


t1$plot_group_distance()


## ------------------------------------------------
## Method `trans_beta$plot_clustering`
## ------------------------------------------------

t1$plot_clustering(group = "Group", replace_name = c("Saline", "Type"))

Create trans_classifier object for machine-learning-based model prediction.

Description

This class is a wrapper for methods of machine-learning-based classification or regression models, including data pre-processing, feature selection, data split, model training, prediction, confusionMatrix and ROC (Receiver Operator Characteristic) or PR (Precision-Recall) curve.

Author(s): Felipe Mansoldo and Chi Liu

Methods

Public methods


Method new()

Create a trans_classifier object.

Usage
trans_classifier$new(
  dataset,
  x.predictors = "Genus",
  y.response = NULL,
  n.cores = 1
)
Arguments
dataset

an object of microtable class.

x.predictors

default "Genus"; character string or data.frame; a character string represents selecting the corresponding data from microtable$taxa_abund; data.frame denotes other customized input. See the following available options:

'Genus'

use Genus level table in microtable$taxa_abund, or other specific taxonomic rank, e.g., 'Phylum'. If an input level (e.g., ASV) is not found in the names of taxa_abund list, the function will use otu_table to calculate relative abundance of features.

'all'

use all the levels stored in microtable$taxa_abund.

other input

must be a data.frame object. It should have the same format with the tables in microtable$taxa_abund, i.e. rows are features; columns are samples with same names in sample_table.

y.response

default NULL; the response variable in sample_table of input microtable object.

n.cores

default 1; the CPU thread used.

Returns

data_feature and data_response stored in the object.

Examples
\donttest{
data(dataset)
t1 <- trans_classifier$new(
		dataset = dataset, 
		x.predictors = "Genus",
		y.response = "Group")
}

Method cal_preProcess()

Pre-process (centering, scaling etc.) of the feature data based on the caret::preProcess function. See https://topepo.github.io/caret/pre-processing.html for more details.

Usage
trans_classifier$cal_preProcess(...)
Arguments
...

parameters pass to preProcess function of caret package.

Returns

preprocessed data_feature in the object.

Examples
\dontrun{
# "nzv" removes near zero variance predictors
t1$cal_preProcess(method = c("center", "scale", "nzv"))
}

Method cal_feature_sel()

Perform feature selection. See https://topepo.github.io/caret/feature-selection-overview.html for more details.

Usage
trans_classifier$cal_feature_sel(
  boruta.maxRuns = 300,
  boruta.pValue = 0.01,
  boruta.repetitions = 4,
  ...
)
Arguments
boruta.maxRuns

default 300; maximal number of importance source runs; passed to the maxRuns parameter in Boruta function of Boruta package.

boruta.pValue

default 0.01; p value passed to the pValue parameter in Boruta function of Boruta package.

boruta.repetitions

default 4; repetition runs for the feature selection.

...

parameters pass to Boruta function of Boruta package.

Returns

optimized data_feature in the object.

Examples
\dontrun{
t1$cal_feature_sel(boruta.maxRuns = 300, boruta.pValue = 0.01)
}

Method cal_split()

Split data for training and testing.

Usage
trans_classifier$cal_split(prop.train = 3/4)
Arguments
prop.train

default 3/4; the ratio of the data used for the training.

Returns

data_train and data_test in the object.

Examples
\dontrun{
t1$cal_split(prop.train = 3/4)
}

Method set_trainControl()

Control parameters for the following training. Please see trainControl function of caret package for details.

Usage
trans_classifier$set_trainControl(
  method = "repeatedcv",
  classProbs = TRUE,
  savePredictions = TRUE,
  ...
)
Arguments
method

default 'repeatedcv'; 'repeatedcv': Repeated k-Fold cross validation; see method parameter in trainControl function of caret package for available options.

classProbs

default TRUE; should class probabilities be computed for classification models?; see classProbs parameter in caret::trainControl function.

savePredictions

default TRUE; see savePredictions parameter in caret::trainControl function.

...

parameters pass to trainControl function of caret package.

Returns

trainControl in the object.

Examples
\dontrun{
t1$set_trainControl(method = 'repeatedcv')
}

Method cal_train()

Run the model training. Please see https://topepo.github.io/caret/available-models.html for available models.

Usage
trans_classifier$cal_train(method = "rf", max.mtry = 2, ntree = 500, ...)
Arguments
method

default "rf"; "rf": random forest; see method in train function of caret package for other options. For method = "rf", the tuneGrid is set: expand.grid(mtry = seq(from = 1, to = max.mtry))

max.mtry

default 2; for method = "rf"; maximum mtry used in the tuneGrid to do hyperparameter tuning to optimize the model.

ntree

default 500; for method = "rf"; Number of trees to grow. The default 500 is same with the ntree parameter in randomForest function in randomForest package. When it is a vector with more than one element, the function will try to optimize the model to select a best one, such as c(100, 500, 1000).

...

parameters pass to caret::train function.

Returns

res_train in the object.

Examples
\dontrun{
# random forest
t1$cal_train(method = "rf")
# Support Vector Machines with Radial Basis Function Kernel
t1$cal_train(method = "svmRadial", tuneLength = 15)
}

Method cal_feature_imp()

Get feature importance from the training model.

Usage
trans_classifier$cal_feature_imp(rf_feature_sig = FALSE, ...)
Arguments
rf_feature_sig

default FALSE; whether calculate feature significance in 'rf' model using rfPermute package; only available for method = "rf" in cal_train function.

...

parameters pass to varImp function of caret package. If rf_feature_sig is TURE and train_method is "rf", the parameters will be passed to rfPermute function of rfPermute package.

Returns

res_feature_imp in the object. One row for each predictor variable. The column(s) are different importance measures. For the method 'rf', it is MeanDecreaseGini (classification) or IncNodePurity (regression) when rf_feature_sig = FALSE.

Examples
\dontrun{
t1$cal_feature_imp()
}

Method plot_feature_imp()

Bar plot for feature importance.

Usage
trans_classifier$plot_feature_imp(
  rf_sig_show = NULL,
  show_sig_group = FALSE,
  ...
)
Arguments
rf_sig_show

default NULL; "MeanDecreaseAccuracy" (Default) or "MeanDecreaseGini" for random forest classification; "%IncMSE" (Default) or "IncNodePurity" for random forest regression; Only available when rf_feature_sig = TRUE in function cal_feature_imp, which generate "MeanDecreaseGini" (and "MeanDecreaseAccuracy") or "%IncMSE" (and "IncNodePurity") in the column names of res_feature_imp; Function can also generate "Significance" according to the p value.

show_sig_group

default FALSE; whether show the features with different significant groups; Only available when "Significance" is found in the data.

...

parameters pass to plot_diff_bar function of trans_diff package.

Returns

ggplot2 object.

Examples
\dontrun{
t1$plot_feature_imp(use_number = 1:20, coord_flip = FALSE)
}

Method cal_predict()

Run the prediction.

Usage
trans_classifier$cal_predict(positive_class = NULL)
Arguments
positive_class

default NULL; see positive parameter in confusionMatrix function of caret package; If positive_class is NULL, use the first group in data as the positive class automatically.

Returns

res_predict, res_confusion_fit and res_confusion_stats stored in the object. The res_predict is the predicted result for data_test. Several evaluation metrics in res_confusion_fit are defined as follows:

Accuracy=TP+TNTP+TN+FP+FNAccuracy = \frac{TP + TN}{TP + TN + FP + FN}

Sensitivity=Recall=TPR=TPTP+FNSensitivity = Recall = TPR = \frac{TP}{TP + FN}

Specificity=TNR=1FPR=TNTN+FPSpecificity = TNR = 1 - FPR = \frac{TN}{TN + FP}

Precision=TPTP+FPPrecision = \frac{TP}{TP + FP}

Prevalence=TP+FNTP+TN+FP+FNPrevalence = \frac{TP + FN}{TP + TN + FP + FN}

F1Score=2PrecisionRecallPrecision+RecallF1-Score = \frac{2 * Precision * Recall}{Precision + Recall}

Kappa=AccuracyPe1PeKappa = \frac{Accuracy - Pe}{1 - Pe}

where TP is true positive; TN is ture negative; FP is false positive; and FN is false negative; FPR is False Positive Rate; TPR is True Positive Rate; TNR is True Negative Rate; Pe is the hypothetical probability of chance agreement on the classes for reference and prediction in the confusion matrix. Accuracy represents the ratio of correct predictions. Precision identifies how the model accurately predicted the positive classes. Recall (sensitivity) measures the ratio of actual positives that are correctly identified by the model. F1-score is the weighted average score of recall and precision. The value at 1 is the best performance and at 0 is the worst. Prevalence represents how often positive events occurred. Kappa identifies how well the model is predicting.

Examples
\dontrun{
t1$cal_predict()
}

Method plot_confusionMatrix()

Plot the cross-tabulation of observed and predicted classes with associated statistics based on the results of function cal_predict.

Usage
trans_classifier$plot_confusionMatrix(
  plot_confusion = TRUE,
  plot_statistics = TRUE
)
Arguments
plot_confusion

default TRUE; whether plot the confusion matrix.

plot_statistics

default TRUE; whether plot the statistics.

Returns

ggplot object.

Examples
\dontrun{
t1$plot_confusionMatrix()
}

Method cal_ROC()

Get ROC (Receiver Operator Characteristic) curve data and the performance data.

Usage
trans_classifier$cal_ROC(input = "pred")
Arguments
input

default "pred"; 'pred' or 'train'; 'pred' represents using prediction results; 'train' represents using training results.

Returns

a list res_ROC stored in the object. It has two tables: res_roc and res_pr. AUC: Area Under the ROC Curve. For the definition of metrics, please refer to the return part of function cal_predict.

Examples
\dontrun{
t1$cal_ROC()
}

Method plot_ROC()

Plot ROC curve.

Usage
trans_classifier$plot_ROC(
  plot_type = c("ROC", "PR")[1],
  plot_group = "all",
  color_values = RColorBrewer::brewer.pal(8, "Dark2"),
  add_AUC = TRUE,
  plot_method = FALSE,
  ...
)
Arguments
plot_type

default c("ROC", "PR")[1]; 'ROC' represents ROC (Receiver Operator Characteristic) curve; 'PR' represents PR (Precision-Recall) curve.

plot_group

default "all"; 'all' represents all the classes in the model; 'add' represents all adding micro-average and macro-average results, see https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html; other options should be one or more class names, same with the names in Group column of res_ROC$res_roc from cal_ROC function.

color_values

default RColorBrewer::brewer.pal(8, "Dark2"); colors used in the plot.

add_AUC

default TRUE; whether add AUC in the legend.

plot_method

default FALSE; If TRUE, show the method in the legend though only one method is found.

...

parameters pass to geom_path function of ggplot2 package.

Returns

ggplot2 object.

Examples
\dontrun{
t1$plot_ROC(size = 1, alpha = 0.7)
}

Method cal_caretList()

Use caretList function of caretEnsemble package to run multiple models. For the available models, please run names(getModelInfo()).

Usage
trans_classifier$cal_caretList(...)
Arguments
...

parameters pass to caretList function of caretEnsemble package.

Returns

res_caretList_models in the object.

Examples
\dontrun{
t1$cal_caretList(methodList = c('rf', 'svmRadial'))
}

Method cal_caretList_resamples()

Use resamples function of caret package to collect the metric values based on the res_caretList_models data.

Usage
trans_classifier$cal_caretList_resamples(...)
Arguments
...

parameters pass to resamples function of caret package.

Returns

res_caretList_resamples list and res_caretList_resamples_reshaped table in the object.

Examples
\dontrun{
t1$cal_caretList_resamples()
}

Method plot_caretList_resamples()

Visualize the metric values based on the res_caretList_resamples_reshaped data.

Usage
trans_classifier$plot_caretList_resamples(
  color_values = RColorBrewer::brewer.pal(8, "Dark2"),
  ...
)
Arguments
color_values

default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for the box.

...

parameters pass to geom_boxplot function of ggplot2 package.

Returns

ggplot object.

Examples
\dontrun{
t1$plot_caretList_resamples()
}

Method clone()

The objects of this class are cloneable with this method.

Usage
trans_classifier$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `trans_classifier$new`
## ------------------------------------------------


data(dataset)
t1 <- trans_classifier$new(
		dataset = dataset, 
		x.predictors = "Genus",
		y.response = "Group")


## ------------------------------------------------
## Method `trans_classifier$cal_preProcess`
## ------------------------------------------------

## Not run: 
# "nzv" removes near zero variance predictors
t1$cal_preProcess(method = c("center", "scale", "nzv"))

## End(Not run)

## ------------------------------------------------
## Method `trans_classifier$cal_feature_sel`
## ------------------------------------------------

## Not run: 
t1$cal_feature_sel(boruta.maxRuns = 300, boruta.pValue = 0.01)

## End(Not run)

## ------------------------------------------------
## Method `trans_classifier$cal_split`
## ------------------------------------------------

## Not run: 
t1$cal_split(prop.train = 3/4)

## End(Not run)

## ------------------------------------------------
## Method `trans_classifier$set_trainControl`
## ------------------------------------------------

## Not run: 
t1$set_trainControl(method = 'repeatedcv')

## End(Not run)

## ------------------------------------------------
## Method `trans_classifier$cal_train`
## ------------------------------------------------

## Not run: 
# random forest
t1$cal_train(method = "rf")
# Support Vector Machines with Radial Basis Function Kernel
t1$cal_train(method = "svmRadial", tuneLength = 15)

## End(Not run)

## ------------------------------------------------
## Method `trans_classifier$cal_feature_imp`
## ------------------------------------------------

## Not run: 
t1$cal_feature_imp()

## End(Not run)

## ------------------------------------------------
## Method `trans_classifier$plot_feature_imp`
## ------------------------------------------------

## Not run: 
t1$plot_feature_imp(use_number = 1:20, coord_flip = FALSE)

## End(Not run)

## ------------------------------------------------
## Method `trans_classifier$cal_predict`
## ------------------------------------------------

## Not run: 
t1$cal_predict()

## End(Not run)

## ------------------------------------------------
## Method `trans_classifier$plot_confusionMatrix`
## ------------------------------------------------

## Not run: 
t1$plot_confusionMatrix()

## End(Not run)

## ------------------------------------------------
## Method `trans_classifier$cal_ROC`
## ------------------------------------------------

## Not run: 
t1$cal_ROC()

## End(Not run)

## ------------------------------------------------
## Method `trans_classifier$plot_ROC`
## ------------------------------------------------

## Not run: 
t1$plot_ROC(size = 1, alpha = 0.7)

## End(Not run)

## ------------------------------------------------
## Method `trans_classifier$cal_caretList`
## ------------------------------------------------

## Not run: 
t1$cal_caretList(methodList = c('rf', 'svmRadial'))

## End(Not run)

## ------------------------------------------------
## Method `trans_classifier$cal_caretList_resamples`
## ------------------------------------------------

## Not run: 
t1$cal_caretList_resamples()

## End(Not run)

## ------------------------------------------------
## Method `trans_classifier$plot_caretList_resamples`
## ------------------------------------------------

## Not run: 
t1$plot_caretList_resamples()

## End(Not run)

Create trans_diff object for the differential analysis on the taxonomic abundance

Description

This class is a wrapper for a series of differential abundance test and indicator analysis methods, including LEfSe based on the Segata et al. (2011) <doi:10.1186/gb-2011-12-6-r60>, random forest <doi:10.1016/j.geoderma.2018.09.035>, metastat based on White et al. (2009) <doi:10.1371/journal.pcbi.1000352>, non-parametric Kruskal-Wallis Rank Sum Test, Dunn's Kruskal-Wallis Multiple Comparisons based on the FSA package, Wilcoxon Rank Sum and Signed Rank Tests, t-test, anova, Scheirer Ray Hare test, R package metagenomeSeq Paulson et al. (2013) <doi:10.1038/nmeth.2658>, R package ANCOMBC <doi:10.1038/s41467-020-17041-7>, R package ALDEx2 <doi:10.1371/journal.pone.0067019; 10.1186/2049-2618-2-15>, R package MicrobiomeStat <doi:10.1186/s13059-022-02655-5>, beta regression <doi:10.18637/jss.v034.i02>, R package maaslin2, linear mixed-effects model and generalized linear mixed model.

Methods

Public methods


Method new()

Usage
trans_diff$new(
  dataset = NULL,
  method = c("lefse", "rf", "metastat", "metagenomeSeq", "KW", "KW_dunn", "wilcox",
    "t.test", "anova", "scheirerRayHare", "lm", "ancombc2", "ALDEx2_t", "ALDEx2_kw",
    "DESeq2", "edgeR", "linda", "maaslin2", "betareg", "lme", "glmm", "glmm_beta")[1],
  group = NULL,
  taxa_level = "all",
  filter_thres = 0,
  alpha = 0.05,
  p_adjust_method = "fdr",
  transformation = NULL,
  remove_unknown = TRUE,
  lefse_subgroup = NULL,
  lefse_min_subsam = 10,
  lefse_sub_strict = FALSE,
  lefse_sub_alpha = NULL,
  lefse_norm = 1e+06,
  nresam = 0.6667,
  boots = 30,
  rf_imp_type = 2,
  group_choose_paired = NULL,
  metagenomeSeq_count = 1,
  ALDEx2_sig = c("wi.eBH", "kw.eBH"),
  by_group = NULL,
  by_ID = NULL,
  beta_pseudo = .Machine$double.eps,
  ...
)
Arguments
dataset

default NULL; microtable object.

method

default "lefse". Some methods (e.g., "lefse", "KW", "wilcox", "anova", "lm", "betareg", "glmm" and "glmm_beta") invoke the taxa_abund list (generally relative abundance data) of input microtable object for the analysis. Some (e.g., "metastat", "metagenomeSeq", "ALDEx2_t", "DESeq2", "edgeR", "ancombc2" and "linda") use the otu_table of input microtable object for the analysis. Available options include:

'lefse'

LEfSe method based on Segata et al. (2011) <doi:10.1186/gb-2011-12-6-r60>

'rf'

random forest and non-parametric test method based on An et al. (2019) <doi:10.1016/j.geoderma.2018.09.035>

'metastat'

Metastat method for all paired groups based on White et al. (2009) <doi:10.1371/journal.pcbi.1000352>

'metagenomeSeq'

zero-inflated log-normal model-based differential test method from metagenomeSeq package.

'KW'

KW: Kruskal-Wallis Rank Sum Test for all groups (>= 2)

'KW_dunn'

Dunn's Kruskal-Wallis Multiple Comparisons when group number > 2; see dunnTest function in FSA package

'wilcox'

Wilcoxon Rank Sum and Signed Rank Tests for all paired groups

't.test'

Student's t-Test for all paired groups

'anova'

ANOVA for one-way or multi-factor analysis; see cal_diff function of trans_alpha class

'scheirerRayHare'

Scheirer Ray Hare test for nonparametric test used for a two-way factorial experiment; see scheirerRayHare function of rcompanion package

'lm'

Linear Model based on the lm function

'ALDEx2_t'

runs Welch's t and Wilcoxon tests with ALDEx2 package; see also the test parameter in ALDEx2::aldex function; ALDEx2 uses the centred log-ratio (clr) transformation and estimates per-feature technical variation within each sample using Monte-Carlo instances drawn from the Dirichlet distribution; Reference: <doi:10.1371/journal.pone.0067019> and <doi:10.1186/2049-2618-2-15>; require ALDEx2 package to be installed (https://bioconductor.org/packages/release/bioc/html/ALDEx2.html)

'ALDEx2_kw'

runs Kruskal-Wallace and generalized linear model (glm) test with ALDEx2 package; see also the test parameter in ALDEx2::aldex function.

'DESeq2'

Differential expression analysis based on the Negative Binomial (a.k.a. Gamma-Poisson) distribution based on the DESeq2 package.

'edgeR'

The exactTest method of edgeR package is implemented.

'ancombc2'

Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC) based on the ancombc2 function from ANCOMBC package. If the fix_formula parameter is not provided, the function can automatically assign it by using group parameter. For this method, the group parameter is directly passed to the group parameter of ancombc2 function. Reference: <doi:10.1038/s41467-020-17041-7><10.1038/s41592-023-02092-7>; Require ANCOMBC package to be installed (https://bioconductor.org/packages/release/bioc/html/ANCOMBC.html)

'linda'

Linear Model for Differential Abundance Analysis of High-dimensional Compositional Data based on the linda function of MicrobiomeStat package. For linda method, please provide either the group parameter or the formula parameter. When the formula parameter is provided, it should start with '~' as it is directly used by the linda function. If the group parameter is used, the prefix '~' is not necessary as the function can automatically add it. The parameter feature.dat.type = 'count' has been fixed. Other parameters can be passed to the linda function. Reference: <doi:10.1186/s13059-022-02655-5>

'maaslin2'

finding associations between metadata and potentially high-dimensional microbial multi-omics data based on the Maaslin2 package. Using this option can invoke the trans_env$cal_cor function with cor_method = "maaslin2".

'betareg'

Beta Regression based on the betareg package. Please see the beta_pseudo parameter for the use of pseudo value when there is 0 or 1 in the data

'lme'

Linear Mixed Effect Model based on the lmerTest package. In the return table, the significance of fixed factors are tested by function anova. The significance of 'Estimate' in each term of fixed factors comes from the model.

'glmm'

Generalized linear mixed model (GLMM) based on the glmmTMB package. The formula and family parameters are needed. Please refer to glmmTMB package to select the family function, e.g. family = glmmTMB::lognormal(link = "log"). The usage of formula is similar with that in 'lme' method. For more available parameters, please see glmmTMB::glmmTMB function and use parameter passing. In the result, Conditional R2 and Marginal R2 represent the variance explained by both fixed and random effects and the variance explained by fixed effects, respectively. For more details on R2 calculation, please refer to the article <doi: 10.1098/rsif.2017.0213>. The significance of fixed factors are tested by Chi-square test from function car::Anova. The significance of 'Estimate' in each term of fixed factors comes from the model.

'glmm_beta'

Generalized linear mixed model with a family function of beta distribution, developed for the relative abundance (ranging from 0 to 1) of taxa specifically. This is an extension of the GLMM model in 'glmm' option. The only difference is in glmm_beta the family function is fixed with the beta distribution function, i.e. family = glmmTMB::beta_family(link = "logit"). Please see the beta_pseudo parameter for the use of pseudo value when there is 0 or 1 in the data

group

default NULL; sample group used for the comparision; a colname of input microtable$sample_table; It is necessary when method is not "anova" or method is "anova" but formula is not provided. Once group is provided, the return res_abund will have mean and sd values for group.

taxa_level

default "all"; 'all' represents using abundance data of all taxonomic ranks; For testing at a specific rank, provide taxonomic rank name, such as "Genus". If the provided taxonomic name is neither 'all' nor a colname in tax_table of input dataset (e.g., "ASV"), the function will use the features in input microtable$otu_table automatically. Note that a specific level (e.g., "ASV") should be provided for method: "metastat", "metagenomeSeq", "ALDEx2_t", "DESeq2", "edgeR", "ancombc2", "linda", "maaslin2".

filter_thres

default 0; the abundance threshold, such as 0.0005 when the input is relative abundance; only available when method != "metastat". The features with abundances lower than filter_thres will be filtered.

alpha

default 0.05; significance threshold to select taxa when method is "lefse" or "rf"; or used to generate significance letters when method is 'anova' or 'KW_dunn' like the alpha parameter in cal_diff of trans_alpha class.

p_adjust_method

default "fdr"; p.adjust method; see method parameter of p.adjust function for other available options; "none" means disable p value adjustment; So when p_adjust_method = "none", P.adj is same with P.unadj.

transformation

default NULL; feature abundance transformation method in the class trans_norm, such as 'AST' for the arc sine square root transformation. Only available when method is one of "KW", "KW_dunn", "wilcox", "t.test", "anova", "scheirerRayHare", "betareg" and "lme".

remove_unknown

default TRUE; whether remove unknown features that donot have clear classification information.

lefse_subgroup

default NULL; sample sub group used for sub-comparision in lefse; Segata et al. (2011) <doi:10.1186/gb-2011-12-6-r60>.

lefse_min_subsam

default 10; sample numbers required in the subgroup test.

lefse_sub_strict

default FALSE; whether remove the features strictly in the sub-checking. FALSE means only removing the features that have different orders of medians across sub-groups with those across groups and the statistics are also significant. TRUE means removing the features that are not significant in one (or more) sub-test or have different orders of medians across sub-groups with those across groups.

lefse_sub_alpha

default NULL; The significance threshold in the test for lefse sub-groups. NULL means it is same with alpha.

lefse_norm

default 1000000; normalization value used in lefse to scale abundances for each level. A lefse_norm value < 0 (e.g., -1) means no normalization same with the LEfSe python version.

nresam

default 0.6667; sample number ratio used in each bootstrap for method = "lefse" or "rf".

boots

default 30; bootstrap test number for method = "lefse" or "rf".

rf_imp_type

default 2; the type of feature importance in random forest when method = "rf". Same with type parameter in importance function of randomForest package. 1=mean decrease in accuracy (MeanDecreaseAccuracy), 2=mean decrease in node impurity (MeanDecreaseGini).

group_choose_paired

default NULL; a vector used for selecting the required groups for paired testing instead of all paired combinations across groups; Available when method is "metastat", "metagenomeSeq", "ALDEx2_t" or "edgeR".

metagenomeSeq_count

default 1; Filter features to have at least 'counts' counts.; see the count parameter in MRcoefs function of metagenomeSeq package.

ALDEx2_sig

default c("wi.eBH", "kw.eBH"); which column of the final result is used as the significance asterisk assignment; applied to method = "ALDEx2_t" or "ALDEx2_kw"; the first element is provided to "ALDEx2_t"; the second is provided to "ALDEx2_kw"; for "ALDEx2_t", the available choice is "wi.eBH" (Expected Benjamini-Hochberg corrected P value of Wilcoxon test) and "we.eBH" (Expected BH corrected P value of Welch's t test); for "ALDEx2_kw"; for "ALDEx2_t", the available choice is "kw.eBH" (Expected BH corrected P value of Kruskal-Wallace test) and "glm.eBH" (Expected BH corrected P value of glm test).

by_group

default NULL; a column of sample_table used to perform the differential test among groups (group parameter) for each group (by_group parameter). So by_group has a higher level than group parameter. Same with the by_group parameter in trans_alpha class. Only available when method is one of c("KW", "KW_dunn", "wilcox", "t.test", "anova", "scheirerRayHare").

by_ID

default NULL; a column of sample_table used to perform paired t test or paired wilcox test for the paired data, such as the data of plant compartments for different plant species (ID). So by_ID in sample_table should be the smallest unit of sample collection without any repetition in it. Same with the by_ID parameter in trans_alpha class.

beta_pseudo

default .Machine$double.eps; the pseudo value used when the parameter method is 'betareg' or 'glmm_beta'. As the beta distribution function limits 0 < response value < 1, a pseudo value will be added for the data that equal to 0. The data that equal to 1 will be replaced by 1/(1 + beta_pseudo).

...

parameters passed to cal_diff function of trans_alpha class when method is one of "KW", "KW_dunn", "wilcox", "t.test", "anova", "betareg", "lme", "glmm" or "glmm_beta"; passed to randomForest::randomForest function when method = "rf"; passed to ANCOMBC::ancombc2 function when method is "ancombc2" (except tax_level, global and fix_formula parameters); passed to ALDEx2::aldex function when method = "ALDEx2_t" or "ALDEx2_kw"; passed to DESeq2::DESeq function when method = "DESeq2"; passed to MicrobiomeStat::linda function when method = "linda"; passed to trans_env$cal_cor function when method = "maaslin2".

Returns

res_diff and res_abund.
res_abund includes mean abundance of each taxa (Mean), standard deviation (SD), standard error (SE) and sample number (N) in the group (Group).
res_diff is the detailed differential test result depending on the method choice, may containing:
"Comparison": The groups for the comparision, maybe all groups or paired groups. If this column is not found, all groups are used;
"Group": Which group has the maximum median or mean value across the test groups; For non-parametric methods, median value; For t.test, mean value;
"Taxa": which taxa is used in this comparision;
"Method": Test method used in the analysis depending on the method input;
"LDA" or others: LDA: linear discriminant score in LEfSe; MeanDecreaseAccuracy and MeanDecreaseGini: mean decreasing in accuracy or in node impurity (gini index) in random forest;
"P.unadj": original p value;
"P.adj": adjusted p value;
"Estimate" and "Std.Error": When method is "betareg", "lm", "lme" or "glmm", "Estimate" and "Std.Error" represent fitted coefficient and its standard error, respectively;
Others: qvalue: qvalue in metastat analysis.

Examples
\donttest{
data(dataset)
t1 <- trans_diff$new(dataset = dataset, method = "lefse", group = "Group")
t1 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group")
t1 <- trans_diff$new(dataset = dataset, method = "metastat", group = "Group", taxa_level = "Genus")
t1 <- trans_diff$new(dataset = dataset, method = "wilcox", group = "Group")
}

Method plot_diff_abund()

Plot the abundance of taxa.

The significance can be optionally added in the plot. The taxa displayed are based on the taxa in the 'res_diff' table, selected using parameters. If the user filters out the non-significant taxa from the 'res_diff' table, these taxa will also be filtered from the plot.

Usage
trans_diff$plot_diff_abund(
  use_number = 1:10,
  color_values = RColorBrewer::brewer.pal(8, "Dark2"),
  select_taxa = NULL,
  simplify_names = TRUE,
  keep_prefix = TRUE,
  group_order = NULL,
  order_x_mean = TRUE,
  coord_flip = TRUE,
  add_sig = TRUE,
  xtext_angle = 45,
  xtext_size = 13,
  ytitle_size = 17,
  ...
)
Arguments
use_number

default 1:10; numeric vector; the sequences of taxa (1:n) selected in the plot; If n is larger than the number of total significant taxa, automatically use the total number as n.

color_values

default RColorBrewer::brewer.pal(8, "Dark2"); color pallete for groups.

select_taxa

default NULL; character vector to provide taxa names. The taxa names should be same with the names shown in the plot, not the 'Taxa' column names in object$res_diff$Taxa.

simplify_names

default TRUE; whether use the simplified taxonomic name.

keep_prefix

default TRUE; whether retain the taxonomic prefix.

group_order

default NULL; a vector to order groups, i.e. reorder the legend and colors in plot; If NULL, the function can first check whether the group column of sample_table is factor. If yes, use the levels in it. If provided, overlook the levels in the group of sample_table.

order_x_mean

default TRUE; whether order x axis by the means of groups from large to small.

coord_flip

default TRUE; whether flip cartesian coordinates so that horizontal becomes vertical, and vertical becomes horizontal.

add_sig

default TRUE; whether add the significance label to the plot.

xtext_angle

default 45; number (e.g. 45). Angle of text in x axis.

xtext_size

default 13; x axis text size. NULL means the default size in ggplot2. If coord_flip = TRUE, it represents the text size of the y axis.

ytitle_size

default 17; y axis title size. If coord_flip = TRUE, it represents the title size of the x axis (i.e. "Relative abundance").

...

parameters passed to plot_alpha function of trans_alpha class.

Returns

ggplot.

Examples
\donttest{
t1 <- trans_diff$new(dataset = dataset, method = "anova", group = "Group", taxa_level = "Genus")
t1$plot_diff_abund(use_number = 1:10)
t1$plot_diff_abund(use_number = 1:10, add_sig = TRUE)
t1 <- trans_diff$new(dataset = dataset, method = "wilcox", group = "Group")
t1$plot_diff_abund(use_number = 1:20)
t1$plot_diff_abund(use_number = 1:20, add_sig = TRUE)
t1 <- trans_diff$new(dataset = dataset, method = "lefse", group = "Group")
t1$plot_diff_abund(use_number = 1:20)
t1$plot_diff_abund(use_number = 1:20, add_sig = TRUE)
}

Method plot_diff_bar()

Bar plot for indicator index, such as LDA score and P value.

Usage
trans_diff$plot_diff_bar(
  color_values = RColorBrewer::brewer.pal(8, "Dark2"),
  color_group_map = FALSE,
  use_number = 1:10,
  threshold = NULL,
  select_group = NULL,
  keep_full_name = FALSE,
  keep_prefix = TRUE,
  group_order = NULL,
  group_aggre = TRUE,
  group_two_sep = TRUE,
  coord_flip = TRUE,
  add_sig = FALSE,
  add_sig_increase = 0.1,
  add_sig_text_size = 5,
  xtext_angle = 45,
  xtext_size = 10,
  axis_text_y = 12,
  heatmap_cell = "P.unadj",
  heatmap_sig = "Significance",
  heatmap_x = "Factors",
  heatmap_y = "Taxa",
  heatmap_lab_fill = "P value",
  ...
)
Arguments
color_values

default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for different groups.

color_group_map

default FALSE; whether match the colors to groups in order to fix the color in each group when part of groups are not shown in the plot. When color_group_map = TRUE, the group_order inside the object will be used as full groups set to guide the color extraction.

use_number

default 1:10; numeric vector; the taxa numbers used in the plot, i.e. 1:n.

threshold

default NULL; threshold value of indicators for selecting taxa, such as 3 for LDA score of LEfSe.

select_group

default NULL; this is used to select the paired group when multiple comparisions are generated; The input select_group must be one of object$res_diff$Comparison.

keep_full_name

default FALSE; whether keep the taxonomic full lineage names.

keep_prefix

default TRUE; whether retain the taxonomic prefix, such as "g__".

group_order

default NULL; a vector to order the legend and colors in plot; If NULL, the function can first determine whether the group column of microtable$sample_table is factor. If yes, use the levels in it. If provided, this parameter can overwrite the levels in the group of microtable$sample_table.

group_aggre

default TRUE; whether aggregate the features for each group.

group_two_sep

default TRUE; whether display the features of two groups on opposite sides of the coordinate axes when there are only two groups in total.

coord_flip

default TRUE; whether flip cartesian coordinates so that horizontal becomes vertical, and vertical becomes horizontal.

add_sig

default FALSE; whether add significance label (asterisk) above the bar.

add_sig_increase

default 0.1; the axis position (Value + add_sig_increase * max(Value)) from which to add the significance label; only available when add_sig = TRUE.

add_sig_text_size

default 5; the size of added significance label; only available when add_sig = TRUE.

xtext_angle

default 45; number ranging from 0 to 90; used to make x axis text generate angle to reduce text overlap; only available when coord_flip = FALSE.

xtext_size

default 10; the text size of x axis.

axis_text_y

default 12; the size for the y axis text.

heatmap_cell

default "P.unadj"; the column of data for the cell of heatmap when formula with multiple factors is found in the method.

heatmap_sig

default "Significance"; the column of data for the significance label of heatmap.

heatmap_x

default "Factors"; the column of data for the x axis of heatmap.

heatmap_y

default "Taxa"; the column of data for the y axis of heatmap.

heatmap_lab_fill

default "P value"; legend title of heatmap.

...

parameters passing to geom_bar for the bar plot or plot_cor function in trans_env class for the heatmap of multiple factors when formula is found in the method.

Returns

ggplot.

Examples
\donttest{
t1$plot_diff_bar(use_number = 1:20)
}

Method plot_diff_cladogram()

Plot the cladogram using taxa with significant difference.

Usage
trans_diff$plot_diff_cladogram(
  color = RColorBrewer::brewer.pal(8, "Dark2"),
  group_order = NULL,
  use_taxa_num = 200,
  filter_taxa = NULL,
  use_feature_num = NULL,
  clade_label_level = 4,
  select_show_labels = NULL,
  only_select_show = FALSE,
  sep = "|",
  branch_size = 0.2,
  alpha = 0.2,
  clade_label_size = 2,
  clade_label_size_add = 5,
  clade_label_size_log = exp(1),
  node_size_scale = 1,
  node_size_offset = 1,
  annotation_shape = 22,
  annotation_shape_size = 5
)
Arguments
color

default RColorBrewer::brewer.pal(8, "Dark2"); color palette used in the plot.

group_order

default NULL; a vector to order the legend in plot; If NULL, the function can first check whether the group column of sample_table is factor. If yes, use the levels in it. If provided, this parameter can overwrite the levels in the group of sample_table. If the number of provided group_order is less than the number of groups in res_diff$Group, the function will select the groups of group_order automatically.

use_taxa_num

default 200; integer; The taxa number used in the background tree plot; select the taxa according to the mean abundance .

filter_taxa

default NULL; The mean relative abundance used to filter the taxa with low abundance.

use_feature_num

default NULL; integer; The feature number used in the plot; select the features according to the metric (method = "lefse" or "rf") from high to low.

clade_label_level

default 4; the taxonomic level for marking the label with letters, root is the largest.

select_show_labels

default NULL; character vector; The features to show in the plot with full label names, not the letters.

only_select_show

default FALSE; whether only use the the select features in the parameter select_show_labels.

sep

default "|"; the seperate character in the taxonomic information.

branch_size

default 0.2; numberic, size of branch.

alpha

default 0.2; shading of the color.

clade_label_size

default 2; basic size for the clade label; please also see clade_label_size_add and clade_label_size_log.

clade_label_size_add

default 5; added basic size for the clade label; see the formula in clade_label_size_log parameter.

clade_label_size_log

default exp(1); the base of log function for added size of the clade label; the size formula: clade_label_size + log(clade_label_level + clade_label_size_add, base = clade_label_size_log); so use clade_label_size_log, clade_label_size_add and clade_label_size can totally control the label size for different taxonomic levels.

node_size_scale

default 1; scale for the node size.

node_size_offset

default 1; offset for the node size.

annotation_shape

default 22; shape used in the annotation legend.

annotation_shape_size

default 5; size used in the annotation legend.

Returns

ggplot.

Examples
\dontrun{
t1$plot_diff_cladogram(use_taxa_num = 100, use_feature_num = 30, select_show_labels = NULL)
}

Method clone()

The objects of this class are cloneable with this method.

Usage
trans_diff$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `trans_diff$new`
## ------------------------------------------------


data(dataset)
t1 <- trans_diff$new(dataset = dataset, method = "lefse", group = "Group")
t1 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group")
t1 <- trans_diff$new(dataset = dataset, method = "metastat", group = "Group", taxa_level = "Genus")
t1 <- trans_diff$new(dataset = dataset, method = "wilcox", group = "Group")


## ------------------------------------------------
## Method `trans_diff$plot_diff_abund`
## ------------------------------------------------


t1 <- trans_diff$new(dataset = dataset, method = "anova", group = "Group", taxa_level = "Genus")
t1$plot_diff_abund(use_number = 1:10)
t1$plot_diff_abund(use_number = 1:10, add_sig = TRUE)
t1 <- trans_diff$new(dataset = dataset, method = "wilcox", group = "Group")
t1$plot_diff_abund(use_number = 1:20)
t1$plot_diff_abund(use_number = 1:20, add_sig = TRUE)
t1 <- trans_diff$new(dataset = dataset, method = "lefse", group = "Group")
t1$plot_diff_abund(use_number = 1:20)
t1$plot_diff_abund(use_number = 1:20, add_sig = TRUE)


## ------------------------------------------------
## Method `trans_diff$plot_diff_bar`
## ------------------------------------------------


t1$plot_diff_bar(use_number = 1:20)


## ------------------------------------------------
## Method `trans_diff$plot_diff_cladogram`
## ------------------------------------------------

## Not run: 
t1$plot_diff_cladogram(use_taxa_num = 100, use_feature_num = 30, select_show_labels = NULL)

## End(Not run)

Create trans_env object to analyze the association between environmental factor and microbial community.

Description

This class is a wrapper for a series of operations associated with environmental measurements, including redundancy analysis, mantel test, correlation analysis and linear fitting.

Methods

Public methods


Method new()

Usage
trans_env$new(
  dataset = NULL,
  env_cols = NULL,
  add_data = NULL,
  character2numeric = FALSE,
  standardize = FALSE,
  complete_na = FALSE
)
Arguments
dataset

the object of microtable Class.

env_cols

default NULL; either numeric vector or character vector to select columns in microtable$sample_table, i.e. dataset$sample_table. This parameter should be used in the case that all the required environmental data is in sample_table of your microtable object. Otherwise, please use add_data parameter.

add_data

default NULL; data.frame format; provide the environmental data in the format data.frame; rownames should be sample names. This parameter should be used when the microtable$sample_table object does not have environmental data. Under this circumstance, the env_cols parameter can not be used because no data can be selected.

character2numeric

default FALSE; whether convert the characters or factors to numeric values.

standardize

default FALSE; whether scale environmental variables to zero mean and unit variance.

complete_na

default FALSE; Whether fill the NA (missing value) in the environmental data; If TRUE, the function can run the interpolation with the mice package.

Returns

data_env stored in the object.

Examples
data(dataset)
data(env_data_16S)
t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])

Method cal_diff()

Differential test of environmental variables across groups.

Usage
trans_env$cal_diff(
  group = NULL,
  by_group = NULL,
  method = c("KW", "KW_dunn", "wilcox", "t.test", "anova", "scheirerRayHare", "lm",
    "lme", "glmm")[1],
  ...
)
Arguments
group

default NULL; a colname of sample_table used to compare values across groups.

by_group

default NULL; perform differential test among groups (group parameter) within each group (by_group parameter).

method

default "KW"; see the following available options:

'KW'

KW: Kruskal-Wallis Rank Sum Test for all groups (>= 2)

'KW_dunn'

Dunn's Kruskal-Wallis Multiple Comparisons, see dunnTest function in FSA package

'wilcox'

Wilcoxon Rank Sum and Signed Rank Tests for all paired groups

't.test'

Student's t-Test for all paired groups

'anova'

Duncan's new multiple range test for one-way anova; see duncan.test function of agricolae package. For multi-factor anova, see aov

'scheirerRayHare'

Scheirer Ray Hare test for nonparametric test used for a two-way factorial experiment; see scheirerRayHare function of rcompanion package

'lm'

Linear model based on the lm function

'lme'

lme: Linear Mixed Effect Model based on the lmerTest package. The formula parameter should be provided.

'glmm'

Generalized linear mixed model (GLMM) based on the glmmTMB package. The formula and family parameters are needed. Please refer to glmmTMB package to select the family function, e.g. family = glmmTMB::lognormal(link = "log"). The usage of formula is similar with that in 'lme' method. For the details of return table, please refer to the help document of trans_diff class.

...

parameters passed to cal_diff function of trans_alpha class.

Returns

res_diff stored in the object. In the data frame, 'Group' column means that the group has the maximum median or mean value across the test groups; For non-parametric methods, median value; For t.test, mean value.

Examples
\donttest{
t1$cal_diff(group = "Group", method = "KW")
t1$cal_diff(group = "Group", method = "anova")
}

Method plot_diff()

Plot environmental variables across groups and add the significance label.

Usage
trans_env$plot_diff(...)
Arguments
...

parameters passed to plot_alpha in trans_alpha class. Please see plot_alpha function of trans_alpha for all the available parameters.


Method cal_autocor()

Calculate the autocorrelations among environmental variables.

Usage
trans_env$cal_autocor(
  group = NULL,
  ggpairs = TRUE,
  color_values = RColorBrewer::brewer.pal(8, "Dark2"),
  alpha = 0.8,
  ...
)
Arguments
group

default NULL; a colname of sample_table; used to perform calculations for different groups.

ggpairs

default TRUE; whether use GGally::ggpairs function to plot the correlation results. If ggpairs = FALSE, the function will output a table with all the values instead of a graph. In this case, the function will call cal_cor to calculate autocorrelation instead of using the ggpairs function in GGally, so please use parameter passing to control more options.

color_values

default RColorBrewer::brewer.pal(8, "Dark2"); colors palette.

alpha

default 0.8; the alpha value to add transparency in colors; useful when group is not NULL.

...

parameters passed to GGally::ggpairs when ggpairs = TRUE or passed to cal_cor of trans_env class when ggpairs = FALSE.

Returns

ggmatrix when ggpairs = TRUE or data.frame object when ggpairs = FALSE.

Examples
\dontrun{
# Spearman correlation
t1$cal_autocor(upper = list(continuous = GGally::wrap("cor", method= "spearman")))
}

Method cal_ordination()

Redundancy analysis (RDA) and Correspondence Analysis (CCA) based on the vegan package.

Usage
trans_env$cal_ordination(
  method = c("RDA", "dbRDA", "CCA")[1],
  feature_sel = FALSE,
  taxa_level = NULL,
  taxa_filter_thres = NULL,
  use_measure = NULL,
  add_matrix = NULL,
  ...
)
Arguments
method

default c("RDA", "dbRDA", "CCA")[1]; the ordination method.

feature_sel

default FALSE; whether perform the feature selection based on forward selection method.

taxa_level

default NULL; If use RDA or CCA, provide the taxonomic rank, such as "Phylum" or "Genus"; If use otu_table; please set taxa_level = "OTU".

taxa_filter_thres

default NULL; relative abundance threshold used to filter taxa when method is "RDA" or "CCA".

use_measure

default NULL; a name of beta diversity matrix; only available when parameter method = "dbRDA"; If not provided, use the first beta diversity matrix in the microtable$beta_diversity automatically.

add_matrix

default NULL; additional distance matrix provided, when the user does not want to use the beta diversity matrix within the dataset; only available when method = "dbRDA".

...

paremeters passed to dbrda, rda or cca function according to the method parameter.

Returns

res_ordination and res_ordination_R2 stored in the object.

Examples
\donttest{
t1$cal_ordination(method = "dbRDA", use_measure = "bray")
t1$cal_ordination(method = "RDA", taxa_level = "Genus")
t1$cal_ordination(method = "CCA", taxa_level = "Genus")
}

Method cal_ordination_anova()

Use anova to test the significance of the terms and axis in ordination.

Usage
trans_env$cal_ordination_anova(...)
Arguments
...

parameters passed to anova function.

Returns

res_ordination_terms and res_ordination_axis stored in the object.

Examples
\donttest{
t1$cal_ordination_anova()
}

Method cal_ordination_envfit()

Fit each environmental vector onto the ordination to obtain the contribution of each variable.

Usage
trans_env$cal_ordination_envfit(...)
Arguments
...

the parameters passed to vegan::envfit function.

Returns

res_ordination_envfit stored in the object.

Examples
\donttest{
t1$cal_ordination_envfit()
}

Method trans_ordination()

Transform ordination results for the following plot.

Usage
trans_env$trans_ordination(
  show_taxa = 10,
  adjust_arrow_length = FALSE,
  min_perc_env = 0.1,
  max_perc_env = 0.8,
  min_perc_tax = 0.1,
  max_perc_tax = 0.8
)
Arguments
show_taxa

default 10; taxa number shown in the plot.

adjust_arrow_length

default FALSE; whether adjust the arrow length to be clearer.

min_perc_env

default 0.1; used for scaling up the minimum of env arrow; multiply by the maximum distance between samples and origin.

max_perc_env

default 0.8; used for scaling up the maximum of env arrow; multiply by the maximum distance between samples and origin.

min_perc_tax

default 0.1; used for scaling up the minimum of tax arrow; multiply by the maximum distance between samples and origin.

max_perc_tax

default 0.8; used for scaling up the maximum of tax arrow; multiply by the maximum distance between samples and origin.

Returns

res_ordination_trans stored in the object.

Examples
\donttest{
t1$trans_ordination(adjust_arrow_length = TRUE, min_perc_env = 0.1, max_perc_env = 1)
}

Method plot_ordination()

plot ordination result.

Usage
trans_env$plot_ordination(
  plot_color = NULL,
  plot_shape = NULL,
  color_values = RColorBrewer::brewer.pal(8, "Dark2"),
  shape_values = c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14),
  env_text_color = "black",
  env_arrow_color = "grey30",
  taxa_text_color = "firebrick1",
  taxa_arrow_color = "firebrick1",
  env_text_size = 3.7,
  taxa_text_size = 3,
  taxa_text_italic = TRUE,
  plot_type = "point",
  point_size = 3,
  point_alpha = 0.8,
  centroid_segment_alpha = 0.6,
  centroid_segment_size = 1,
  centroid_segment_linetype = 3,
  ellipse_chull_fill = TRUE,
  ellipse_chull_alpha = 0.1,
  ellipse_level = 0.9,
  ellipse_type = "t",
  add_sample_label = NULL,
  env_nudge_x = NULL,
  env_nudge_y = NULL,
  taxa_nudge_x = NULL,
  taxa_nudge_y = NULL,
  ...
)
Arguments
plot_color

default NULL; a colname of sample_table to assign colors to different groups.

plot_shape

default NULL; a colname of sample_table to assign shapes to different groups.

color_values

default RColorBrewer::brewer.pal(8, "Dark2"); color pallete for different groups.

shape_values

default c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14); a vector for point shape types of groups, see ggplot2 tutorial.

env_text_color

default "black"; environmental variable text color.

env_arrow_color

default "grey30"; environmental variable arrow color.

taxa_text_color

default "firebrick1"; taxa text color.

taxa_arrow_color

default "firebrick1"; taxa arrow color.

env_text_size

default 3.7; environmental variable text size.

taxa_text_size

default 3; taxa text size.

taxa_text_italic

default TRUE; "italic"; whether use "italic" style for the taxa text.

plot_type

default "point"; plotting type of samples; one or more elements of "point", "ellipse", "chull", "centroid" and "none"; "none" denotes nothing.

'point'

add point

'ellipse'

add confidence ellipse for points of each group

'chull'

add convex hull for points of each group

'centroid'

add centroid line of each group

point_size

default 3; point size in plot when "point" is in plot_type.

point_alpha

default .8; point transparency in plot when "point" is in plot_type.

centroid_segment_alpha

default 0.6; segment transparency in plot when "centroid" is in plot_type.

centroid_segment_size

default 1; segment size in plot when "centroid" is in plot_type.

centroid_segment_linetype

default 3; an integer; the line type related with centroid in plot when "centroid" is in plot_type.

ellipse_chull_fill

default TRUE; whether fill colors to the area of ellipse or chull.

ellipse_chull_alpha

default 0.1; color transparency in the ellipse or convex hull depending on whether "ellipse" or "centroid" is in plot_type.

ellipse_level

default .9; confidence level of ellipse when "ellipse" is in plot_type.

ellipse_type

default "t"; ellipse type when "ellipse" is in plot_type; see type parameter in stat_ellipse function of ggplot2 package.

add_sample_label

default NULL; the column name in sample table, if provided, show the point name in plot.

env_nudge_x

default NULL; numeric vector to adjust the env text x axis position; passed to nudge_x parameter of ggrepel::geom_text_repel function; default NULL represents automatic adjustment; the length must be same with the row number of object$res_ordination_trans$df_arrows. For example, if there are 5 env variables, env_nudge_x should be something like c(0.1, 0, -0.2, 0, 0). Note that this parameter and env_nudge_y is generally used when the automatic text adjustment is not very well.

env_nudge_y

default NULL; numeric vector to adjust the env text y axis position; passed to nudge_y parameter of ggrepel::geom_text_repel function; default NULL represents automatic adjustment; the length must be same with the row number of object$res_ordination_trans$df_arrows. For example, if there are 5 env variables, env_nudge_y should be something like c(0.1, 0, -0.2, 0, 0).

taxa_nudge_x

default NULL; numeric vector to adjust the taxa text x axis position; passed to nudge_x parameter of ggrepel::geom_text_repel function; default NULL represents automatic adjustment; the length must be same with the row number of object$res_ordination_trans$df_arrows_spe. For example, if 3 taxa are shown, taxa_nudge_x should be something like c(0.3, -0.2, 0).

taxa_nudge_y

default NULL; numeric vector to adjust the taxa text y axis position; passed to nudge_y parameter of ggrepel::geom_text_repel function; default NULL represents automatic adjustment; the length must be same with the row number of object$res_ordination_trans$df_arrows_spe. For example, if 3 taxa are shown, taxa_nudge_y should be something like c(-0.2, 0, 0.4).

...

paremeters passed to geom_point for controlling sample points.

Returns

ggplot object.

Examples
\donttest{
t1$cal_ordination(method = "RDA")
t1$trans_ordination(adjust_arrow_length = TRUE, max_perc_env = 1.5)
t1$plot_ordination(plot_color = "Group")
t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = c("point", "ellipse"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "chull"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"), 
	  centroid_segment_linetype = 1)
t1$plot_ordination(plot_color = "Group", env_nudge_x = c(0.4, 0, 0, 0, 0, -0.2, 0, 0), 
	  env_nudge_y = c(0.6, 0, 0.2, 0.5, 0, 0.1, 0, 0.2))
}

Method cal_mantel()

Mantel test between beta diversity matrix and environmental data.

Usage
trans_env$cal_mantel(
  partial_mantel = FALSE,
  add_matrix = NULL,
  use_measure = NULL,
  method = "pearson",
  p_adjust_method = "fdr",
  by_group = NULL,
  ...
)
Arguments
partial_mantel

default FALSE; whether use partial mantel test; If TRUE, use other all measurements as the zdis in each calculation.

add_matrix

default NULL; additional distance matrix provided when the beta diversity matrix in the dataset is not used.

use_measure

default NULL; a name of beta diversity matrix. If necessary and not provided, use the first beta diversity matrix.

method

default "pearson"; one of "pearson", "spearman" and "kendall"; correlation method; see method parameter in vegan::mantel function.

p_adjust_method

default "fdr"; p.adjust method; see method parameter of p.adjust function for available options.

by_group

default NULL; one column name or number in sample_table; used to perform mantel test for different groups separately.

...

paremeters passed to mantel of vegan package.

Returns

res_mantel in object.

Examples
\donttest{
t1$cal_mantel(use_measure = "bray")
t1$cal_mantel(partial_mantel = TRUE, use_measure = "bray")
}

Method cal_cor()

Calculate the correlations between taxonomic abundance and environmental variables. Actually, it can also be applied to other correlation between any two variables from two tables.

Usage
trans_env$cal_cor(
  use_data = c("Genus", "all", "other")[1],
  cor_method = c("pearson", "spearman", "kendall", "maaslin2")[1],
  partial = FALSE,
  partial_fix = NULL,
  add_abund_table = NULL,
  filter_thres = 0,
  use_taxa_num = NULL,
  other_taxa = NULL,
  p_adjust_method = "fdr",
  p_adjust_type = c("All", "Taxa", "Env")[1],
  by_group = NULL,
  group_use = NULL,
  group_select = NULL,
  taxa_name_full = TRUE,
  tmp_input_maaslin2 = "tmp_input",
  tmp_output_maaslin2 = "tmp_output",
  ...
)
Arguments
use_data

default "Genus"; "Genus", "all" or "other"; "Genus" or other taxonomic names (e.g., "Phylum", "ASV"): invoke taxonomic abundance table in taxa_abund list of the microtable object; "all": merge all the taxonomic abundance tables in taxa_abund list into one; "other": provide additional taxa names by assigning other_taxa parameter.

cor_method

default "pearson"; "pearson", "spearman", "kendall" or "maaslin2"; correlation method. "pearson", "spearman" or "kendall" all refer to the correlation analysis based on the cor.test function in R. "maaslin2" is the method in Maaslin2 package for finding associations between metadata and potentially high-dimensional microbial multi-omics data.

partial

default FALSE; whether perform partial correlation based on the ppcor package.

partial_fix

default NULL; selected environmental variable names used as third group of variables in all the partial correlations. If NULL; all the variables (except the one for correlation) in the environmental data will be used as the third group of variables. Otherwise, the function will control for the provided variables (one or more) in all the partial correlations, and the variables in partial_fix will not be employed anymore in the correlation analysis.

add_abund_table

default NULL; additional data table to be used. Row names must be sample names.

filter_thres

default 0; the abundance threshold, such as 0.0005 when the input is relative abundance. The features with abundances lower than filter_thres will be filtered. This parameter cannot be applied when add_abund_table parameter is provided.

use_taxa_num

default NULL; integer; a number used to select high abundant taxa; only useful when use_data parameter is a taxonomic level, e.g., "Genus".

other_taxa

default NULL; character vector containing a series of feature names; available when use_data = "other"; provided names should be standard full names used to select taxa from all the tables in taxa_abund list of the microtable object; please refer to the example.

p_adjust_method

default "fdr"; p.adjust method; see method parameter of p.adjust function for available options. p_adjust_method = "none" can disable the p value adjustment.

p_adjust_type

default "All"; "All", "Taxa" or "Env"; P value adjustment type. "Env": adjustment for each environmental variable separately; "Taxa": adjustment for each taxon separately; "All": adjustment for all the data together no matter whether by_group is provided.

by_group

default NULL; one column name or number in sample_table; calculate correlations for different groups separately.

group_use

default NULL; numeric or character vector to select one column in sample_table for selecting samples; together with group_select.

group_select

default NULL; the group name used; remain samples within the group.

taxa_name_full

default TRUE; Whether use the complete taxonomic name of taxa.

tmp_input_maaslin2

default "tmp_input"; the temporary folder used to save the input files for Maaslin2.

tmp_output_maaslin2

default "tmp_output"; the temporary folder used to save the output files of Maaslin2.

...

parameters passed to Maaslin2 function of Maaslin2 package.

Returns

res_cor stored in the object.

Examples
\donttest{
t2 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group", rf_taxa_level = "Genus")
t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])
t1$cal_cor(use_data = "other", p_adjust_method = "fdr", other_taxa = t2$res_diff$Taxa[1:40])
}

Method plot_cor()

Plot correlation heatmap.

Usage
trans_env$plot_cor(
  color_vector = c("#053061", "white", "#A50026"),
  color_palette = NULL,
  filter_feature = NULL,
  filter_env = NULL,
  keep_full_name = FALSE,
  keep_prefix = TRUE,
  text_y_order = NULL,
  text_x_order = NULL,
  xtext_angle = 30,
  xtext_size = 10,
  xtext_color = "black",
  ytext_italic = FALSE,
  ytext_size = NULL,
  ytext_color = "black",
  ytext_position = "right",
  sig_label_size = 4,
  font_family = NULL,
  cluster_ggplot = "none",
  cluster_height_rows = 0.2,
  cluster_height_cols = 0.2,
  na.value = "grey50",
  trans = "identity",
  ylab_type_italic = deprecated(),
  text_y_position = deprecated(),
  ...
)
Arguments
color_vector

default c("#053061", "white", "#A50026"); colors with only three values representing low, middle and high values.

color_palette

default NULL; a customized palette with more color values to be used instead of the parameter color_vector.

filter_feature

default NULL; character vector; used to filter features that only have labels in the filter_feature vector. For example, filter_feature = "" can be used to remove features that only have "", no any "*".

filter_env

default NULL; character vector; used to filter environmental variables that only have labels in the filter_env vector. For example, filter_env = "" can be used to remove features that only have "", no any "*".

keep_full_name

default FALSE; whether use the complete taxonomic name.

keep_prefix

default TRUE; whether retain the taxonomic prefix.

text_y_order

default NULL; character vector; customized text for y axis; shown in the plot from the top down. The input should be consistent with the feature names in the res_cor table.

text_x_order

default NULL; character vector; customized text for x axis.

xtext_angle

default 30; number ranging from 0 to 90; used to adjust x axis text angle.

xtext_size

default 10; x axis text size.

xtext_color

default "black"; x axis text color.

ytext_italic

default FALSE; whether use italic for y axis text.

ytext_size

default NULL; y axis text size. NULL means default ggplot2 value.

ytext_color

default "black"; y axis text color.

ytext_position

default "right"; "left" or "right"; the y axis text position.

sig_label_size

default 4; the size of significance label shown in the cell.

font_family

default NULL; font family used.

cluster_ggplot

default "none"; add clustering dendrogram for ggplot2 based heatmap. Available options: "none", "row", "col" or "both". "none": no any clustering used; "row": add clustering for rows; "col": add clustering for columns; "both": add clustering for both rows and columns.

cluster_height_rows

default 0.2, the dendrogram plot height for rows; available when cluster_ggplot is not "none".

cluster_height_cols

default 0.2, the dendrogram plot height for columns; available when cluster_ggplot is not "none".

na.value

default "grey50"; the color for the missing values.

trans

default "identity"; the transformation for continuous scales in the legend; see the trans item in ggplot2::scale_colour_gradientn.

ylab_type_italic

deprecated. Please use ytext_italic argument instead.

text_y_position

deprecated. Please use ytext_position argument instead.

...

paremeters passed to ggplot2::geom_tile.

Returns

ggplot2 object.

Examples
\donttest{
t1$plot_cor()
}

Method plot_scatterfit()

Scatter plot with fitted line based on the correlation or regression.
The most important thing is to make sure that the input x and y have correponding sample orders. If one of x and y is a matrix, the other will be also transformed to matrix with Euclidean distance. Then, both of them are transformed to be vectors. If x or y is a vector with a single value, x or y will be assigned according to the column selection of the data_env in the object.

Usage
trans_env$plot_scatterfit(
  x = NULL,
  y = NULL,
  group = NULL,
  group_order = NULL,
  color_values = RColorBrewer::brewer.pal(8, "Dark2"),
  shape_values = NULL,
  type = c("cor", "lm")[1],
  cor_method = "pearson",
  label_sep = ";",
  label.x.npc = "left",
  label.y.npc = "top",
  label.x = NULL,
  label.y = NULL,
  x_axis_title = "",
  y_axis_title = "",
  point_size = 5,
  point_alpha = 0.6,
  line_size = 0.8,
  line_color = "black",
  line_se = TRUE,
  line_se_color = "grey70",
  line_alpha = 0.5,
  pvalue_trim = 4,
  cor_coef_trim = 3,
  lm_equation = TRUE,
  lm_fir_trim = 2,
  lm_sec_trim = 2,
  lm_squ_trim = 2,
  ...
)
Arguments
x

default NULL; a single numeric or character value, a vector, or a distance matrix used for the x axis. If x is a single value, it will be used to select the column of data_env in the object. If x is a distance matrix, it will be transformed to be a vector.

y

default NULL; a single numeric or character value, a vector, or a distance matrix used for the y axis. If y is a single value, it will be used to select the column of data_env in the object. If y is a distance matrix, it will be transformed to be a vector.

group

default NULL; a character vector; if length is 1, must be a colname of sample_table in the input dataset; Otherwise, group should be a vector having same length with x/y (for vector) or column number of x/y (for matrix).

group_order

default NULL; a vector used to order groups, i.e. reorder the legend and colors in plot when group is not NULL; If group_order is NULL and group is provided, the function can first check whether the group column of sample_table is factor. If group_order is provided, disable the group orders or factor levels in the group column of sample_table.

color_values

default RColorBrewer::brewer.pal(8, "Dark2"); color pallete for different groups.

shape_values

default NULL; a numeric vector for point shape types of groups when group is not NULL, see ggplot2 tutorial.

type

default c("cor", "lm")[1]; "cor": correlation; "lm" for regression.

cor_method

default "pearson"; one of "pearson", "kendall" and "spearman"; correlation method.

label_sep

default ";"; the separator string between different label parts.

label.x.npc

default "left"; can be numeric or character vector of the same length as the number of groups and/or panels. If too short, they will be recycled.

numeric

value should be between 0 and 1. Coordinates to be used for positioning the label, expressed in "normalized parent coordinates"

character

allowed values include: i) one of c('right', 'left', 'center', 'centre', 'middle') for x-axis; ii) and one of c( 'bottom', 'top', 'center', 'centre', 'middle') for y-axis.

label.y.npc

default "top"; same usage with label.x.npc; also see label.y.npc parameter of ggpubr::stat_cor function.

label.x

default NULL; x axis absolute position for adding the statistic label.

label.y

default NULL; x axis absolute position for adding the statistic label.

x_axis_title

default ""; the title of x axis.

y_axis_title

default ""; the title of y axis.

point_size

default 5; point size value.

point_alpha

default 0.6; alpha value for the point color transparency.

line_size

default 0.8; line size value.

line_color

default "black"; fitted line color; only available when group = NULL.

line_se

default TRUE; Whether show the confidence interval for the fitting.

line_se_color

default "grey70"; the color to fill the confidence interval when line_se = TRUE.

line_alpha

default 0.5; alpha value for the color transparency of line confidence interval.

pvalue_trim

default 4; trim the decimal places of p value.

cor_coef_trim

default 3; trim the decimal places of correlation coefficient.

lm_equation

default TRUE; whether include the equation in the label when type = "lm".

lm_fir_trim

default 2; trim the decimal places of first coefficient in regression.

lm_sec_trim

default 2; trim the decimal places of second coefficient in regression.

lm_squ_trim

default 2; trim the decimal places of R square in regression.

...

other arguments passed to geom_text or geom_label.

Returns

ggplot.

Examples
\donttest{
t1$plot_scatterfit(x = 1, y = 2, type = "cor")
t1$plot_scatterfit(x = 1, y = 2, type = "lm", point_alpha = .3)
t1$plot_scatterfit(x = "pH", y = "TOC", type = "lm", group = "Group", line_se = FALSE)
t1$plot_scatterfit(x = 
	 dataset$beta_diversity$bray[rownames(t1$data_env), rownames(t1$data_env)], y = "pH")
}

Method print()

Print the trans_env object.

Usage
trans_env$print()

Method clone()

The objects of this class are cloneable with this method.

Usage
trans_env$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `trans_env$new`
## ------------------------------------------------

data(dataset)
data(env_data_16S)
t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])

## ------------------------------------------------
## Method `trans_env$cal_diff`
## ------------------------------------------------


t1$cal_diff(group = "Group", method = "KW")
t1$cal_diff(group = "Group", method = "anova")


## ------------------------------------------------
## Method `trans_env$cal_autocor`
## ------------------------------------------------

## Not run: 
# Spearman correlation
t1$cal_autocor(upper = list(continuous = GGally::wrap("cor", method= "spearman")))

## End(Not run)

## ------------------------------------------------
## Method `trans_env$cal_ordination`
## ------------------------------------------------


t1$cal_ordination(method = "dbRDA", use_measure = "bray")
t1$cal_ordination(method = "RDA", taxa_level = "Genus")
t1$cal_ordination(method = "CCA", taxa_level = "Genus")


## ------------------------------------------------
## Method `trans_env$cal_ordination_anova`
## ------------------------------------------------


t1$cal_ordination_anova()


## ------------------------------------------------
## Method `trans_env$cal_ordination_envfit`
## ------------------------------------------------


t1$cal_ordination_envfit()


## ------------------------------------------------
## Method `trans_env$trans_ordination`
## ------------------------------------------------


t1$trans_ordination(adjust_arrow_length = TRUE, min_perc_env = 0.1, max_perc_env = 1)


## ------------------------------------------------
## Method `trans_env$plot_ordination`
## ------------------------------------------------


t1$cal_ordination(method = "RDA")
t1$trans_ordination(adjust_arrow_length = TRUE, max_perc_env = 1.5)
t1$plot_ordination(plot_color = "Group")
t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = c("point", "ellipse"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "chull"))
t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"), 
	  centroid_segment_linetype = 1)
t1$plot_ordination(plot_color = "Group", env_nudge_x = c(0.4, 0, 0, 0, 0, -0.2, 0, 0), 
	  env_nudge_y = c(0.6, 0, 0.2, 0.5, 0, 0.1, 0, 0.2))


## ------------------------------------------------
## Method `trans_env$cal_mantel`
## ------------------------------------------------


t1$cal_mantel(use_measure = "bray")
t1$cal_mantel(partial_mantel = TRUE, use_measure = "bray")


## ------------------------------------------------
## Method `trans_env$cal_cor`
## ------------------------------------------------


t2 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group", rf_taxa_level = "Genus")
t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])
t1$cal_cor(use_data = "other", p_adjust_method = "fdr", other_taxa = t2$res_diff$Taxa[1:40])


## ------------------------------------------------
## Method `trans_env$plot_cor`
## ------------------------------------------------


t1$plot_cor()


## ------------------------------------------------
## Method `trans_env$plot_scatterfit`
## ------------------------------------------------


t1$plot_scatterfit(x = 1, y = 2, type = "cor")
t1$plot_scatterfit(x = 1, y = 2, type = "lm", point_alpha = .3)
t1$plot_scatterfit(x = "pH", y = "TOC", type = "lm", group = "Group", line_se = FALSE)
t1$plot_scatterfit(x = 
	 dataset$beta_diversity$bray[rownames(t1$data_env), rownames(t1$data_env)], y = "pH")

Create trans_func object for functional prediction.

Description

This class is a wrapper for a series of functional prediction analysis on species and communities, including the prokaryotic trait prediction based on Louca et al. (2016) <doi:10.1126/science.aaf4507> and Lim et al. (2020) <10.1038/s41597-020-0516-5>, or fungal trait prediction based on Nguyen et al. (2016) <10.1016/j.funeco.2015.06.006> and Polme et al. (2020) <doi:10.1007/s13225-020-00466-2>; functional redundancy calculation and metabolic pathway abundance prediction Abhauer et al. (2015) <10.1093/bioinformatics/btv287>.

Active bindings

func_group_list

store and show the function group list

Methods

Public methods


Method new()

Create the trans_func object. This function can identify the data type for Prokaryotes or Fungi automatically.

Usage
trans_func$new(dataset = NULL)
Arguments
dataset

the object of microtable Class.

Returns

for_what: "prok" or "fungi" or NA, "prok" represent prokaryotes. "fungi" represent fungi. NA stand for unknown according to the Kingdom information. In this case, if the user still want to use the function to identify species traits, please provide "prok" or "fungi" manually, e.g. t1$for_what <- "prok".

Examples
data(dataset)
t1 <- trans_func$new(dataset = dataset)

Method cal_spe_func()

Identify traits of each feature by matching taxonomic assignments to functional database.

Usage
trans_func$cal_spe_func(
  prok_database = c("FAPROTAX", "NJC19")[1],
  fungi_database = c("FUNGuild", "FungalTraits")[1],
  FUNGuild_confidence = c("Highly Probable", "Probable", "Possible")
)
Arguments
prok_database

default "FAPROTAX"; "FAPROTAX" or "NJC19"; select a prokaryotic trait database:

'FAPROTAX'

FAPROTAX; Reference: Louca et al. (2016). Decoupling function and taxonomy in the global ocean microbiome. Science, 353(6305), 1272. <doi:10.1126/science.aaf4507>

'NJC19'

NJC19: Lim et al. (2020). Large-scale metabolic interaction network of the mouse and human gut microbiota. Scientific Data, 7(1). <10.1038/s41597-020-0516-5>. Note that the matching in this database is performed at the species level, hence utilizing it demands a higher level of precision in regards to the assignments of species in the taxonomic information table.

fungi_database

default "FUNGuild"; "FUNGuild" or "FungalTraits"; select a fungal trait database:

'FUNGuild'

Nguyen et al. (2016) FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20(1), 241-248, <doi:10.1016/j.funeco.2015.06.006>

'FungalTraits'

version: FungalTraits_1.2_ver_16Dec_2020V.1.2; Polme et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity 105, 1-16 (2020). <doi:10.1007/s13225-020-00466-2>

FUNGuild_confidence

default c("Highly Probable", "Probable", "Possible"). Selected 'confidenceRanking' when fungi_database = "FUNGuild".

Returns

res_spe_func stored in object.

Examples
\donttest{
t1$cal_spe_func(prok_database = "FAPROTAX")
}

Method cal_spe_func_perc()

Calculating the percentages of species with specific trait in communities. The percentages of the taxa with specific trait can reflect corresponding functional potential in the community. So this method is one representation of functional redundancy (FR) without the consideration of phylogenetic distance among taxa. The FR is defined:

FRkjunweighted=NjNkFR_{kj}^{unweighted} = \frac{N_{j}}{N_{k}}

FRkjweighted=i=1NjAii=1NkAiFR_{kj}^{weighted} = \frac{\sum_{i=1}^{N_{j}} A_{i}}{\sum_{i=1}^{N_{k}} A_{i}}

where FRkjFR_{kj} denotes the FR for sample k and function j. NkN_{k} is the species number in sample k. NjN_{j} is the number of species with function j in sample k. AiA_{i} is the abundance (counts) of species i in sample k.

Usage
trans_func$cal_spe_func_perc(abundance_weighted = FALSE, perc = TRUE, dec = 2)
Arguments
abundance_weighted

default FALSE; whether use abundance of taxa. If FALSE, calculate the functional population percentage. If TRUE, calculate the functional individual percentage.

perc

default TRUE; whether to use percentages in the result. If TRUE, value is bounded between 0 and 100. If FALSE, the result is relative proportion ('abundance_weighted = FALSE') or relative abundance ('abundance_weighted = TRUE') bounded between 0 and 1.

dec

default 2; remained decimal places.

Returns

res_spe_func_perc stored in the object.

Examples
\donttest{
t1$cal_spe_func_perc(abundance_weighted = TRUE)
}

Method show_prok_func()

Show the annotation information for a function of prokaryotes from FAPROTAX database.

Usage
trans_func$show_prok_func(use_func = NULL)
Arguments
use_func

default NULL; the function name.

Returns

None.

Examples
\donttest{
t1$show_prok_func(use_func = "methanotrophy")
}

Method trans_spe_func_perc()

Transform the res_spe_func_perc table to the long table format for the following visualization. Also add the group information if the database has hierarchical groups.

Usage
trans_func$trans_spe_func_perc()
Returns

res_spe_func_perc_trans stored in the object.

Examples
\donttest{
t1$trans_spe_func_perc()
}

Method plot_spe_func_perc()

Plot the percentages of species with specific trait in communities.

Usage
trans_func$plot_spe_func_perc(
  add_facet = TRUE,
  order_x = NULL,
  color_gradient_low = "#00008B",
  color_gradient_high = "#9E0142"
)
Arguments
add_facet

default TRUE; whether use group names as the facets in the plot, see trans_func$func_group_list object.

order_x

default NULL; character vector; to sort the x axis text; can be also used to select partial samples to show.

color_gradient_low

default "#00008B"; the color used as the low end in the color gradient.

color_gradient_high

default "#9E0142"; the color used as the high end in the color gradient.

Returns

ggplot2.

Examples
\donttest{
t1$plot_spe_func_perc()
}

Method cal_tax4fun2()

Predict functional potential of communities with Tax4Fun2 method. The function was adapted from the raw Tax4Fun2 package to make it compatible with the microtable object. Pleas cite: Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environmental Microbiome 15, 11 (2020). <doi:10.1186/s40793-020-00358-7>

Usage
trans_func$cal_tax4fun2(
  blast_tool_path = NULL,
  path_to_reference_data = "Tax4Fun2_ReferenceData_v2",
  path_to_temp_folder = NULL,
  database_mode = "Ref99NR",
  normalize_by_copy_number = T,
  min_identity_to_reference = 97,
  use_uproc = T,
  num_threads = 1,
  normalize_pathways = F
)
Arguments
blast_tool_path

default NULL; the folder path, e.g., ncbi-blast-2.5.0+/bin ; blast tools folder downloaded from "ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+" ; e.g., ncbi-blast-2.5.0+-x64-win64.tar.gz for windows system; if blast_tool_path is NULL, search the tools in the environmental path variable.

path_to_reference_data

default "Tax4Fun2_ReferenceData_v2"; the path that points to files used in the prediction; The directory must contain the Ref99NR or Ref100NR folder; download Ref99NR.zip from "https://cloudstor.aarnet.edu.au/plus/s/DkoZIyZpMNbrzSw/download" or Ref100NR.zip from "https://cloudstor.aarnet.edu.au/plus/s/jIByczak9ZAFUB4/download".

path_to_temp_folder

default NULL; The temporary folder to store the logfile, intermediate file and result files; if NULL, use the default temporary in the computer system.

database_mode

default 'Ref99NR'; "Ref99NR" or "Ref100NR"; Ref99NR: 99% clustering reference database; Ref100NR: no clustering.

normalize_by_copy_number

default TRUE; whether normalize the result by the 16S rRNA copy number in the genomes.

min_identity_to_reference

default 97; the sequences identity threshold used for finding the nearest species.

use_uproc

default TRUE; whether use UProC to functionally anotate the genomes in the reference data.

num_threads

default 1; the threads used in the blastn.

normalize_pathways

default FALSE; Different to Tax4Fun, when converting from KEGG functions to KEGG pathways, Tax4Fun2 does not equally split KO gene abundances between pathways a functions is affiliated to. The full predicted abundance is affiliated to each pathway. Use TRUE to split the abundances (default is FALSE).

Returns

res_tax4fun2_KO and res_tax4fun2_pathway in object.

Examples
\dontrun{
t1$cal_tax4fun2(blast_tool_path = "ncbi-blast-2.5.0+/bin", 
    path_to_reference_data = "Tax4Fun2_ReferenceData_v2")
}

Method cal_tax4fun2_FRI()

Calculate (multi-) functional redundancy index (FRI) of prokaryotic community with Tax4Fun2 method. This function is used to calculating aFRI and rFRI use the intermediate files generated by the function cal_tax4fun2(). please also cite: Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environmental Microbiome 15, 11 (2020). <doi:10.1186/s40793-020-00358-7>

Usage
trans_func$cal_tax4fun2_FRI()
Returns

res_tax4fun2_aFRI and res_tax4fun2_rFRI in object.

Examples
\dontrun{
t1$cal_tax4fun2_FRI()
}

Method clone()

The objects of this class are cloneable with this method.

Usage
trans_func$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `trans_func$new`
## ------------------------------------------------

data(dataset)
t1 <- trans_func$new(dataset = dataset)

## ------------------------------------------------
## Method `trans_func$cal_spe_func`
## ------------------------------------------------


t1$cal_spe_func(prok_database = "FAPROTAX")


## ------------------------------------------------
## Method `trans_func$cal_spe_func_perc`
## ------------------------------------------------


t1$cal_spe_func_perc(abundance_weighted = TRUE)


## ------------------------------------------------
## Method `trans_func$show_prok_func`
## ------------------------------------------------


t1$show_prok_func(use_func = "methanotrophy")


## ------------------------------------------------
## Method `trans_func$trans_spe_func_perc`
## ------------------------------------------------


t1$trans_spe_func_perc()


## ------------------------------------------------
## Method `trans_func$plot_spe_func_perc`
## ------------------------------------------------


t1$plot_spe_func_perc()


## ------------------------------------------------
## Method `trans_func$cal_tax4fun2`
## ------------------------------------------------

## Not run: 
t1$cal_tax4fun2(blast_tool_path = "ncbi-blast-2.5.0+/bin", 
    path_to_reference_data = "Tax4Fun2_ReferenceData_v2")

## End(Not run)

## ------------------------------------------------
## Method `trans_func$cal_tax4fun2_FRI`
## ------------------------------------------------

## Not run: 
t1$cal_tax4fun2_FRI()

## End(Not run)

Create trans_network object for network analysis.

Description

This class is a wrapper for a series of network analysis methods, including the network construction, topological attributes analysis, eigengene analysis, network subsetting, node and edge properties, network visualization and other operations.

Methods

Public methods


Method new()

Create the trans_network object, store the important intermediate data and calculate correlations if cor_method parameter is not NULL.

Usage
trans_network$new(
  dataset = NULL,
  cor_method = NULL,
  use_WGCNA_pearson_spearman = FALSE,
  use_NetCoMi_pearson_spearman = FALSE,
  use_sparcc_method = c("NetCoMi", "SpiecEasi")[1],
  taxa_level = "OTU",
  filter_thres = 0,
  nThreads = 1,
  SparCC_simu_num = 100,
  env_cols = NULL,
  add_data = NULL,
  ...
)
Arguments
dataset

default NULL; the object of microtable class. Default NULL means customized analysis.

cor_method

default NULL; NULL or one of "bray", "pearson", "spearman", "sparcc", "bicor", "cclasso" and "ccrepe"; All the methods refered to NetCoMi package are performed based on netConstruct function of NetCoMi package and require NetCoMi to be installed from Github (https://github.com/stefpeschel/NetCoMi); For the algorithm details, please see Peschel et al. 2020 Brief. Bioinform <doi: 10.1093/bib/bbaa290>;

NULL

NULL denotes non-correlation network, i.e. do not use correlation-based network. If so, the return res_cor_p list will be NULL.

'bray'

1-B, where B is Bray-Curtis dissimilarity; based on vegan::vegdist function

'pearson'

Pearson correlation; If use_WGCNA_pearson_spearman and use_NetCoMi_pearson_spearman are both FALSE, use the function cor.test in R; use_WGCNA_pearson_spearman = TRUE invoke corAndPvalue function of WGCNA package; use_NetCoMi_pearson_spearman = TRUE invoke netConstruct function of NetCoMi package

'spearman'

Spearman correlation; other details are same with the 'pearson' option

'sparcc'

SparCC algorithm (Friedman & Alm, PLoS Comp Biol, 2012, <doi:10.1371/journal.pcbi.1002687>); use NetCoMi package when use_sparcc_method = "NetCoMi"; use SpiecEasi package when use_sparcc_method = "SpiecEasi" and require SpiecEasi to be installed from Github (https://github.com/zdk123/SpiecEasi)

'bicor'

Calculate biweight midcorrelation efficiently for matrices based on WGCNA::bicor function; This option can invoke netConstruct function of NetCoMi package; Make sure WGCNA and NetCoMi packages are both installed

'cclasso'

Correlation inference of Composition data through Lasso method based on netConstruct function of NetCoMi package; for details, see NetCoMi::cclasso function

'ccrepe'

Calculates compositionality-corrected p-values and q-values for compositional data using an arbitrary distance metric based on NetCoMi::netConstruct function; also see NetCoMi::ccrepe function

use_WGCNA_pearson_spearman

default FALSE; whether use WGCNA package to calculate correlation when cor_method = "pearson" or "spearman".

use_NetCoMi_pearson_spearman

default FALSE; whether use NetCoMi package to calculate correlation when cor_method = "pearson" or "spearman". The important difference between NetCoMi and others is the features of zero handling and data normalization; See <doi: 10.1093/bib/bbaa290>.

use_sparcc_method

default c("NetCoMi", "SpiecEasi")[1]; use NetCoMi package or SpiecEasi package to perform SparCC when cor_method = "sparcc".

taxa_level

default "OTU"; taxonomic rank; 'OTU' denotes using feature abundance table; other available options should be one of the colnames of tax_table of input dataset.

filter_thres

default 0; the relative abundance threshold.

nThreads

default 1; the CPU thread number; available when use_WGCNA_pearson_spearman = TRUE or use_sparcc_method = "SpiecEasi".

SparCC_simu_num

default 100; SparCC simulation number for bootstrap when use_sparcc_method = "SpiecEasi".

env_cols

default NULL; numeric or character vector to select the column names of environmental data in dataset$sample_table; the environmental data can be used in the correlation network (as the nodes) or FlashWeave network.

add_data

default NULL; provide environmental variable table additionally instead of env_cols parameter; rownames must be sample names.

...

parameters pass to NetCoMi::netConstruct for other operations, such as zero handling and/or data normalization when cor_method and other parameters refer to NetCoMi package.

Returns

res_cor_p list with the correlation (association) matrix and p value matrix. Note that when cor_method and other parameters refer to NetCoMi package, the p value table are all zero as the significant associations have been selected.

Examples
\donttest{
data(dataset)
# for correlation network
t1 <- trans_network$new(dataset = dataset, cor_method = "pearson", 
		taxa_level = "OTU", filter_thres = 0.0002)
# for non-correlation network
t1 <- trans_network$new(dataset = dataset, cor_method = NULL)
}

Method cal_network()

Construct network based on the igraph package or SpiecEasi package or julia FlashWeave package or beemStatic package.

Usage
trans_network$cal_network(
  network_method = c("COR", "SpiecEasi", "gcoda", "FlashWeave", "beemStatic")[1],
  COR_p_thres = 0.01,
  COR_p_adjust = "fdr",
  COR_weight = TRUE,
  COR_cut = 0.6,
  COR_optimization = FALSE,
  COR_optimization_low_high = c(0.01, 0.8),
  COR_optimization_seq = 0.01,
  SpiecEasi_method = "mb",
  FlashWeave_tempdir = NULL,
  FlashWeave_meta_data = FALSE,
  FlashWeave_other_para = "alpha=0.01,sensitive=true,heterogeneous=true",
  FlashWeave_gml = NULL,
  beemStatic_t_strength = 0.001,
  beemStatic_t_stab = 0.8,
  add_taxa_name = "Phylum",
  delete_unlinked_nodes = TRUE,
  usename_rawtaxa_notOTU = FALSE,
  ...
)
Arguments
network_method

default "COR"; "COR", "SpiecEasi", "gcoda", "FlashWeave" or "beemStatic"; network_method = NULL means skipping the network construction for the customized use. The option details:

'COR'

correlation-based network; use the correlation and p value matrices in res_cor_p list stored in the object; See Deng et al. (2012) <doi:10.1186/1471-2105-13-113> for other details

'SpiecEasi'

SpiecEasi network; relies on algorithms of sparse neighborhood and inverse covariance selection; belong to the category of conditional dependence and graphical models; see https://github.com/zdk123/SpiecEasi for installing the R package; see Kurtz et al. (2015) <doi:10.1371/journal.pcbi.1004226> for the algorithm details

'gcoda'

hypothesize the logistic normal distribution of microbiome data; use penalized maximum likelihood method to estimate the sparse structure of inverse covariance for latent normal variables to address the high dimensionality of the microbiome data; belong to the category of conditional dependence and graphical models; depend on the R NetCoMi package https://github.com/stefpeschel/NetCoMi; see FANG et al. (2017) <doi:10.1089/cmb.2017.0054> for the algorithm details

'FlashWeave'

FlashWeave network; Local-to-global learning framework; belong to the category of conditional dependence and graphical models; good performance on heterogenous datasets to find direct associations among taxa; see https://github.com/meringlab/FlashWeave.jl for installing julia language and FlashWeave package; julia must be in the computer system env path, otherwise the program can not find it; see Tackmann et al. (2019) <doi:10.1016/j.cels.2019.08.002> for the algorithm details

'beemStatic'

beemStatic network; extend generalized Lotka-Volterra model to cases of cross-sectional datasets to infer interaction among taxa based on expectation-maximization algorithm; see https://github.com/CSB5/BEEM-static for installing the R package; see Li et al. (2021) <doi:10.1371/journal.pcbi.1009343> for the algorithm details

COR_p_thres

default 0.01; the p value threshold for the correlation-based network.

COR_p_adjust

default "fdr"; p value adjustment method, see method parameter of p.adjust function for available options, in which COR_p_adjust = "none" means giving up the p value adjustment.

COR_weight

default TRUE; whether use correlation coefficient as the weight of edges; FALSE represents weight = 1 for all edges.

COR_cut

default 0.6; correlation coefficient threshold for the correlation network.

COR_optimization

default FALSE; whether use random matrix theory (RMT) based method to determine the correlation coefficient; see https://doi.org/10.1186/1471-2105-13-113

COR_optimization_low_high

default c(0.01, 0.8); the low and high value threshold used for the RMT optimization; only useful when COR_optimization = TRUE.

COR_optimization_seq

default 0.01; the interval of correlation coefficient used for RMT optimization; only useful when COR_optimization = TRUE.

SpiecEasi_method

default "mb"; either 'glasso' or 'mb';see spiec.easi function in package SpiecEasi and https://github.com/zdk123/SpiecEasi.

FlashWeave_tempdir

default NULL; The temporary directory used to save the temporary files for running FlashWeave; If not assigned, use the system user temp.

FlashWeave_meta_data

default FALSE; whether use env data for the optimization, If TRUE, the function automatically find the env_data in the object and generate a file for meta_data_path parameter of FlashWeave package.

FlashWeave_other_para

default "alpha=0.01,sensitive=true,heterogeneous=true"; the parameters passed to julia FlashWeave package; user can change the parameters or add more according to FlashWeave help document; An exception is meta_data_path parameter as it is generated based on the data inside the object, see FlashWeave_meta_data parameter for the description.

FlashWeave_gml

default NULL; The path of FlashWeave output gml file for customized usage. This parameter is provided for some customized needs. For instance, it can be cumbersome to input bacterial and fungal abundances as separate input files for network analysis using the above parameter. Users can run FlashWeave on their own, and then provide the resulting gml file to this parameter, which allows them to continue using other functions.

beemStatic_t_strength

default 0.001; for network_method = "beemStatic"; the threshold used to limit the number of interactions (strength); same with the t.strength parameter in showInteraction function of beemStatic package.

beemStatic_t_stab

default 0.8; for network_method = "beemStatic"; the threshold used to limit the number of interactions (stability); same with the t.stab parameter in showInteraction function of beemStatic package.

add_taxa_name

default "Phylum"; one or more taxonomic rank name; used to add taxonomic rank name to network node properties.

delete_unlinked_nodes

default TRUE; whether delete the nodes without any link.

usename_rawtaxa_notOTU

default FALSE; whether use OTU name as representatives of taxa when taxa_level != "OTU". Default FALSE means using taxonomic information of taxa_level instead of OTU name.

...

parameters pass to SpiecEasi::spiec.easi when network_method = "SpiecEasi"; pass to NetCoMi::netConstruct when network_method = "gcoda"; pass to beemStatic::func.EM when network_method = "beemStatic".

Returns

res_network stored in object.

Examples
\dontrun{
# for correlation network
t1 <- trans_network$new(dataset = dataset, cor_method = "pearson", 
		taxa_level = "OTU", filter_thres = 0.001)
t1$cal_network(COR_p_thres = 0.05, COR_cut = 0.6)
t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.003)
t1$cal_network(network_method = "SpiecEasi", SpiecEasi_method = "mb")
t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.005)
t1$cal_network(network_method = "beemStatic")
t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.001)
t1$cal_network(network_method = "FlashWeave")
}

Method cal_module()

Calculate network modules and add module names to the network node properties.

Usage
trans_network$cal_module(
  method = "cluster_fast_greedy",
  module_name_prefix = "M"
)
Arguments
method

default "cluster_fast_greedy"; the method used to find the optimal community structure of a graph; the following are available functions (options) from igraph package:
"cluster_fast_greedy", "cluster_walktrap", "cluster_edge_betweenness",
"cluster_infomap", "cluster_label_prop", "cluster_leading_eigen",
"cluster_louvain", "cluster_spinglass", "cluster_optimal".
For the details of these functions, please see the help document, such as help(cluster_fast_greedy); Note that the default "cluster_fast_greedy" method can not be applied to directed network. If directed network is provided, the function can automatically switch the default method from "cluster_fast_greedy" to "cluster_walktrap".

module_name_prefix

default "M"; the prefix of module names; module names are made of the module_name_prefix and numbers; numbers are assigned according to the sorting result of node numbers in modules with decreasing trend.

Returns

res_network with modules, stored in object.

Examples
\donttest{
t1 <- trans_network$new(dataset = dataset, cor_method = "pearson", 
		taxa_level = "OTU", filter_thres = 0.0002)
t1$cal_network(COR_p_thres = 0.01, COR_cut = 0.6)
t1$cal_module(method = "cluster_fast_greedy")
}

Method save_network()

Save network as gexf style, which can be opened by Gephi (https://gephi.org/).

Usage
trans_network$save_network(filepath = "network.gexf", ...)
Arguments
filepath

default "network.gexf"; file path to save the network.

...

parameters pass to gexf function of rgexf package except for nodes, edges, edgesLabel, edgesWeight, nodesAtt, edgesAtt and meta.

Returns

None

Examples
\dontrun{
t1$save_network(filepath = "network.gexf")
}

Method cal_network_attr()

Calculate network properties.

Usage
trans_network$cal_network_attr()
Returns

res_network_attr stored in object.

Examples
\donttest{
t1$cal_network_attr()
}

Method get_node_table()

Get the node property table. The properties include the node names, modules allocation, degree, betweenness, abundance, taxonomy, within-module connectivity (zi) and among-module connectivity (Pi) <doi:10.1186/1471-2105-13-113; 10.1016/j.geoderma.2022.115866>.

Usage
trans_network$get_node_table(node_roles = TRUE)
Arguments
node_roles

default TRUE; whether calculate the node roles <doi:10.1038/nature03288; 10.1186/1471-2105-13-113>. The role of node i is characterized by its within-module connectivity (zi) and among-module connectivity (Pi) as follows

zi=kibkbˉσkbz_i = \dfrac{k_{ib} - \bar{k_b}}{\sigma_{k_b}}

Pi=1c=1NM(kicki)2P_i = 1 - \displaystyle\sum_{c=1}^{N_M} \biggl(\frac{k_{ic}}{k_i}\biggr)^2

where kibk_{ib} is the number of links of node ii to other nodes in its module bb, kbˉ\bar{k_b} and σkb\sigma_{k_b} are the average and standard deviation of within-module connectivity, respectively over all the nodes in module bb, kik_i is the number of links of node ii in the whole network, kick_{ic} is the number of links from node ii to nodes in module cc, and NMN_M is the number of modules in the network.

Returns

res_node_table in object; Abundance expressed as a percentage; betweenness_centrality: betweenness centrality; betweenness_centrality: closeness centrality; eigenvector_centrality: eigenvector centrality; z: within-module connectivity; p: among-module connectivity.

Examples
\donttest{
t1$get_node_table(node_roles = TRUE)
}

Method get_edge_table()

Get the edge property table, including connected nodes, label and weight.

Usage
trans_network$get_edge_table()
Returns

res_edge_table in object.

Examples
\donttest{
t1$get_edge_table()
}

Method get_adjacency_matrix()

Get the adjacency matrix from the network graph.

Usage
trans_network$get_adjacency_matrix(...)
Arguments
...

parameters passed to as_adjacency_matrix function of igraph package.

Returns

res_adjacency_matrix in object.

Examples
\donttest{
t1$get_adjacency_matrix(attr = "weight")
}

Method plot_network()

Plot the network based on a series of methods from other packages, such as igraph, ggraph and networkD3. The networkD3 package provides dynamic network. It is especially useful for a glimpse of the whole network structure and finding the interested nodes and edges in a large network. In contrast, the igraph and ggraph methods are suitable for relatively small network.

Usage
trans_network$plot_network(
  method = c("igraph", "ggraph", "networkD3")[1],
  node_label = "name",
  node_color = NULL,
  ggraph_layout = "fr",
  ggraph_node_size = 2,
  ggraph_node_text = TRUE,
  ggraph_text_color = NULL,
  ggraph_text_size = 3,
  networkD3_node_legend = TRUE,
  networkD3_zoom = TRUE,
  ...
)
Arguments
method

default "igraph"; The available options:

'igraph'

call plot.igraph function in igraph package for a static network; see plot.igraph for the parameters

'ggraph'

call ggraph function in ggraph package for a static network

'networkD3'

use forceNetwork function in networkD3 package for a dynamic network; see forceNetwork function for the parameters

node_label

default "name"; node label shown in the plot for method = "ggraph" or method = "networkD3"; Please see the column names of object$res_node_table, which is the returned table of function object$get_node_table; User can select other column names in res_node_table.

node_color

default NULL; node color assignment for method = "ggraph" or method = "networkD3"; Select a column name of object$res_node_table, such as "module".

ggraph_layout

default "fr"; for method = "ggraph"; see layout parameter of create_layout function in ggraph package.

ggraph_node_size

default 2; for method = "ggraph"; the node size.

ggraph_node_text

default TRUE; for method = "ggraph"; whether show the label text of nodes.

ggraph_text_color

default NULL; for method = "ggraph"; a column name of object$res_node_table used to assign label text colors.

ggraph_text_size

default 3; for method = "ggraph"; the node label text size.

networkD3_node_legend

default TRUE; used for method = "networkD3"; logical value to enable node colour legends; Please see the legend parameter in networkD3::forceNetwork function.

networkD3_zoom

default TRUE; used for method = "networkD3"; logical value to enable (TRUE) or disable (FALSE) zooming; Please see the zoom parameter in networkD3::forceNetwork function.

...

parameters passed to plot.igraph function when method = "igraph" or forceNetwork function when method = "networkD3".

Returns

network plot.

Examples
\donttest{
t1$plot_network(method = "igraph", layout = layout_with_kk)
t1$plot_network(method = "ggraph", node_color = "module")
t1$plot_network(method = "networkD3", node_color = "module")
}

Method cal_eigen()

Calculate eigengenes of modules, i.e. the first principal component based on PCA analysis, and the percentage of variance <doi:10.1186/1471-2105-13-113>.

Usage
trans_network$cal_eigen()
Returns

res_eigen and res_eigen_expla in object.

Examples
\donttest{
t1$cal_eigen()
}

Method plot_taxa_roles()

Plot the roles or metrics of nodes based on the res_node_table data (coming from function get_node_table) stored in the object.

Usage
trans_network$plot_taxa_roles(
  use_type = c(1, 2)[1],
  roles_color_background = FALSE,
  roles_color_values = NULL,
  add_label = FALSE,
  add_label_group = c("Network hubs", "Module hubs", "Connectors"),
  add_label_text = "name",
  label_text_size = 4,
  label_text_color = "grey50",
  label_text_italic = FALSE,
  label_text_parse = FALSE,
  plot_module = FALSE,
  x_lim = c(0, 1),
  use_level = "Phylum",
  show_value = c("z", "p"),
  show_number = 1:10,
  plot_color = "Phylum",
  plot_shape = "taxa_roles",
  plot_size = "Abundance",
  color_values = RColorBrewer::brewer.pal(12, "Paired"),
  shape_values = c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14),
  ...
)
Arguments
use_type

default 1; 1 or 2; 1 represents taxa roles plot (node roles include Module hubs, Network hubs, Connectors and Peripherals <doi:10.1038/nature03288; 10.1186/1471-2105-13-113>). The 'p' column (Pi, among-module connectivity) in res_node_table table is used in x-axis. The 'z' column (Zi, within-module connectivity) is used in y-axis; 2 represents the layered plot with taxa as x axis and the index (e.g., Zi and Pi) as y axis. Please refer to res_node_table data stored in the object for the detailed information.

roles_color_background

default FALSE; for use_type=1; TRUE: use background colors for each area; FALSE: use classic point colors.

roles_color_values

default NULL; for use_type=1; color palette for background or points.

add_label

default FALSE; for use_type = 1; whether add labels for the points.

add_label_group

default c("Network hubs", "Module hubs", "Connectors"); If add_label = TRUE, which part in taxa_roles column is used to show labels; character vectors.

add_label_text

default "name"; If add_label = TRUE; which column of object$res_node_table is used to label the text.

label_text_size

default 4; The text size of the label.

label_text_color

default "grey50"; The text color of the label.

label_text_italic

default FALSE; whether use italic style for the label text.

label_text_parse

default FALSE; whether parse the label text. See the parse parameter in ggrepel::geom_text_repel function.

plot_module

default FALSE; for use_type=1; whether plot the modules information.

x_lim

default c(0, 1); for use_type=1; x axis range when roles_color_background = FALSE.

use_level

default "Phylum"; for use_type=2; used taxonomic level in x axis.

show_value

default c("z", "p"); for use_type=2; indexes used in y axis. Please see res_node_table in the object for other available indexes.

show_number

default 1:10; for use_type=2; showed number in x axis, sorting according to the nodes number.

plot_color

default "Phylum"; for use_type=2; variable for color.

plot_shape

default "taxa_roles"; for use_type=2; variable for shape.

plot_size

default "Abundance"; for use_type=2; used for point size; a fixed number (e.g. 5) is also acceptable.

color_values

default RColorBrewer::brewer.pal(12, "Paired"); for use_type=2; color vector.

shape_values

default c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14); for use_type=2; shape vector, see ggplot2 tutorial for the shape meaning.

...

parameters pass to geom_point function of ggplot2 package.

Returns

ggplot.

Examples
\donttest{
t1$plot_taxa_roles(roles_color_background = FALSE)
}

Method subset_network()

Subset of the network.

Usage
trans_network$subset_network(
  node = NULL,
  edge = NULL,
  rm_single = TRUE,
  node_alledges = FALSE,
  return_igraph = TRUE
)
Arguments
node

default NULL; provide the node names that will be used in the sub-network.

edge

default NULL; provide the edge label or numbers that need to be remained. For the edge label, it should must be "+" or "-". For the numbers, they should fall within the range of rows in res_edge_table of the object.

rm_single

default TRUE; whether remove the nodes without any edge in the sub-network. So this function can also be used to remove the nodes withou any edge when node and edge are both NULL.

node_alledges

default FALSE; whether remain the nodes and edges that related to the nodes provided in node parameter.

return_igraph

default TRUE; whether return the network with igraph format. If FALSE, return trans_network object.

Returns

a new network

Examples
\donttest{
t1$subset_network(node = t1$res_node_table %>% base::subset(module == "M1") %>% 
  rownames, rm_single = TRUE)
# return a sub network that contains all nodes of module M1
}

Method cal_powerlaw()

Fit degrees to a power law distribution. First, perform a bootstrapping hypothesis test to determine whether degrees follow a power law distribution. If the distribution follows power law, then fit degrees to power law distribution and return the parameters.

Usage
trans_network$cal_powerlaw(...)
Arguments
...

parameters pass to bootstrap_p function in poweRlaw package.

Returns

res_powerlaw_p and res_powerlaw_fit; see poweRlaw::bootstrap_p function for the bootstrapping p value details; see igraph::fit_power_law function for the power law fit return details.

Examples
\donttest{
t1$cal_powerlaw()
}

Method cal_sum_links()

This function is used to sum the links number from one taxa to another or in the same taxa, for example, at Phylum level. This is very useful to fast see how many nodes are connected between different taxa or within the taxa.

Usage
trans_network$cal_sum_links(taxa_level = "Phylum")
Arguments
taxa_level

default "Phylum"; taxonomic rank.

Returns

res_sum_links_pos and res_sum_links_neg in object.

Examples
\donttest{
t1$cal_sum_links(taxa_level = "Phylum")
}

Method plot_sum_links()

Plot the summed linkages among taxa.

Usage
trans_network$plot_sum_links(
  plot_pos = TRUE,
  plot_num = NULL,
  color_values = RColorBrewer::brewer.pal(8, "Dark2"),
  method = c("chorddiag", "circlize")[1],
  ...
)
Arguments
plot_pos

default TRUE; If TRUE, plot the summed positive linkages; If FALSE, plot the summed negative linkages.

plot_num

default NULL; number of taxa presented in the plot.

color_values

default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for taxa.

method

default c("chorddiag", "circlize")[1]; chorddiag package <https://github.com/mattflor/chorddiag> or circlize package.

...

pass to chorddiag::chorddiag function when method = "chorddiag" or circlize::chordDiagram function when method = "circlize". Note that for circlize::chordDiagram function, keep.diagonal, symmetric and self.link parameters have been fixed to fit the input data.

Returns

please see the invoked function.

Examples
\dontrun{
test1$plot_sum_links(method = "chorddiag", plot_pos = TRUE, plot_num = 10)
test1$plot_sum_links(method = "circlize", transparency = 0.2, 
	  annotationTrackHeight = circlize::mm_h(c(5, 5)))
}

Method random_network()

Generate random networks, compare them with the empirical network and get the p value of topological properties. The generation of random graph is based on the erdos.renyi.game function of igraph package. The numbers of vertices and edges in the random graph are same with the empirical network stored in the object.

Usage
trans_network$random_network(runs = 100, output_sim = FALSE)
Arguments
runs

default 100; simulation number of random network.

output_sim

default FALSE; whether output each simulated network result.

Returns

a data.frame with the following components:

Observed

Topological properties of empirical network

Mean_sim

Mean of properties of simulated networks

SD_sim

SD of properties of simulated networks

p_value

Significance, i.e. p values

When output_sim = TRUE, the columns from the five to the last are each simulated result.

Examples
\dontrun{
t1$random_network(runs = 100)
}

Method trans_comm()

Transform classifed features to community-like microtable object for further analysis, such as module-taxa table.

Usage
trans_network$trans_comm(use_col = "module", abundance = TRUE)
Arguments
use_col

default "module"; which column to use as the 'community'; must be one of the name of res_node_table from function get_node_table.

abundance

default TRUE; whether sum abundance of taxa. TRUE: sum the abundance for a taxon across all samples; FALSE: sum the frequency for a taxon across all samples.

Returns

a new microtable class.

Examples
\donttest{
t2 <- t1$trans_comm(use_col = "module")
}

Method print()

Print the trans_network object.

Usage
trans_network$print()

Method clone()

The objects of this class are cloneable with this method.

Usage
trans_network$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `trans_network$new`
## ------------------------------------------------


data(dataset)
# for correlation network
t1 <- trans_network$new(dataset = dataset, cor_method = "pearson", 
		taxa_level = "OTU", filter_thres = 0.0002)
# for non-correlation network
t1 <- trans_network$new(dataset = dataset, cor_method = NULL)


## ------------------------------------------------
## Method `trans_network$cal_network`
## ------------------------------------------------

## Not run: 
# for correlation network
t1 <- trans_network$new(dataset = dataset, cor_method = "pearson", 
		taxa_level = "OTU", filter_thres = 0.001)
t1$cal_network(COR_p_thres = 0.05, COR_cut = 0.6)
t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.003)
t1$cal_network(network_method = "SpiecEasi", SpiecEasi_method = "mb")
t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.005)
t1$cal_network(network_method = "beemStatic")
t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.001)
t1$cal_network(network_method = "FlashWeave")

## End(Not run)

## ------------------------------------------------
## Method `trans_network$cal_module`
## ------------------------------------------------


t1 <- trans_network$new(dataset = dataset, cor_method = "pearson", 
		taxa_level = "OTU", filter_thres = 0.0002)
t1$cal_network(COR_p_thres = 0.01, COR_cut = 0.6)
t1$cal_module(method = "cluster_fast_greedy")


## ------------------------------------------------
## Method `trans_network$save_network`
## ------------------------------------------------

## Not run: 
t1$save_network(filepath = "network.gexf")

## End(Not run)

## ------------------------------------------------
## Method `trans_network$cal_network_attr`
## ------------------------------------------------


t1$cal_network_attr()


## ------------------------------------------------
## Method `trans_network$get_node_table`
## ------------------------------------------------


t1$get_node_table(node_roles = TRUE)


## ------------------------------------------------
## Method `trans_network$get_edge_table`
## ------------------------------------------------


t1$get_edge_table()


## ------------------------------------------------
## Method `trans_network$get_adjacency_matrix`
## ------------------------------------------------


t1$get_adjacency_matrix(attr = "weight")


## ------------------------------------------------
## Method `trans_network$plot_network`
## ------------------------------------------------


t1$plot_network(method = "igraph", layout = layout_with_kk)
t1$plot_network(method = "ggraph", node_color = "module")
t1$plot_network(method = "networkD3", node_color = "module")


## ------------------------------------------------
## Method `trans_network$cal_eigen`
## ------------------------------------------------


t1$cal_eigen()


## ------------------------------------------------
## Method `trans_network$plot_taxa_roles`
## ------------------------------------------------


t1$plot_taxa_roles(roles_color_background = FALSE)


## ------------------------------------------------
## Method `trans_network$subset_network`
## ------------------------------------------------


t1$subset_network(node = t1$res_node_table %>% base::subset(module == "M1") %>% 
  rownames, rm_single = TRUE)
# return a sub network that contains all nodes of module M1


## ------------------------------------------------
## Method `trans_network$cal_powerlaw`
## ------------------------------------------------


t1$cal_powerlaw()


## ------------------------------------------------
## Method `trans_network$cal_sum_links`
## ------------------------------------------------


t1$cal_sum_links(taxa_level = "Phylum")


## ------------------------------------------------
## Method `trans_network$plot_sum_links`
## ------------------------------------------------

## Not run: 
test1$plot_sum_links(method = "chorddiag", plot_pos = TRUE, plot_num = 10)
test1$plot_sum_links(method = "circlize", transparency = 0.2, 
	  annotationTrackHeight = circlize::mm_h(c(5, 5)))

## End(Not run)

## ------------------------------------------------
## Method `trans_network$random_network`
## ------------------------------------------------

## Not run: 
t1$random_network(runs = 100)

## End(Not run)

## ------------------------------------------------
## Method `trans_network$trans_comm`
## ------------------------------------------------


t2 <- t1$trans_comm(use_col = "module")

Feature abundance normalization/transformation.

Description

Feature abundance normalization/transformation for a microtable object or data.frame object.

Methods

Public methods


Method new()

Get a transposed abundance table if the input is microtable object. In the table, rows are samples, and columns are features. This can make the further operations same with the traditional ecological methods.

Usage
trans_norm$new(dataset = NULL)
Arguments
dataset

the microtable object or data.frame object. If it is data.frame object, please make sure that rows are samples, and columns are features.

Returns

data_table, stored in the object.

Examples
library(microeco)
data(dataset)
t1 <- trans_norm$new(dataset = dataset)

Method norm()

Normalization/transformation methods.

Usage
trans_norm$norm(
  method = "rarefy",
  sample.size = NULL,
  rngseed = 123,
  replace = TRUE,
  pseudocount = 1,
  intersect.no = 10,
  ct.min = 1,
  condition = NULL,
  MARGIN = NULL,
  logbase = 2,
  ...
)
Arguments
method

default "rarefy"; See the following available options.

Methods for normalization:

  • "rarefy": classic rarefaction based on R sample function.

  • "SRS": scaling with ranked subsampling method based on the SRS package provided by Lukas Beule and Petr Karlovsky (2020) <doi:10.7717/peerj.9593>.

  • "clr": Centered log-ratio normalization <ISBN:978-0-412-28060-3> <doi: 10.3389/fmicb.2017.02224>. It is defined:

    clrki=logxkig(xi)clr_{ki} = \log\frac{x_{ki}}{g(x_i)}

    where xkix_{ki} is the abundance of kkth feature in sample ii, g(xi)g(x_i) is the geometric mean of abundances for sample ii. A pseudocount need to be added to deal with the zero. For more information, please see the 'clr' method in decostand function of vegan package.

  • "rclr": Robust centered log-ratio normalization <doi:10.1128/msystems.00016-19>. It is defined:

    rclrki=logxkig(xi>0)rclr_{ki} = \log\frac{x_{ki}}{g(x_i > 0)}

    where xkix_{ki} is the abundance of kkth feature in sample ii, g(xi>0)g(x_i > 0) is the geometric mean of abundances (> 0) for sample ii. In rclr, zero values are kept as zeroes, and not taken into account.

  • "GMPR": Geometric mean of pairwise ratios <doi: 10.7717/peerj.4600>. For a given sample ii, the size factor sis_i is defined:

    si=(j=1nMediankckickj0{ckickj})1/ns_i = \biggl( {\displaystyle\prod_{j=1}^{n} Median_{k|c_{ki}c_{kj} \ne 0} \lbrace \dfrac{c_{ki}}{c_{kj}} \rbrace} \biggr) ^{1/n}

    where kk denotes all the features, and nn denotes all the samples. For sample ii, GMPR=xisiGMPR = \frac{x_{i}}{s_i}, where xix_i is the feature abundances of sample ii.

  • "CSS": Cumulative sum scaling normalization based on the metagenomeSeq package <doi:10.1038/nmeth.2658>. For a given sample jj, the scaling factor sjls_{j}^{l} is defined:

    sjl=icijqjlcijs_{j}^{l} = {\displaystyle\sum_{i|c_{ij} \leqslant q_{j}^{l}} c_{ij}}

    where qjlq_{j}^{l} is the llth quantile of sample jj, that is, in sample jj there are ll features with counts smaller than qjlq_{j}^{l}. cijc_{ij} denotes the count (abundance) of feature i in sample jj. For ll = 0.95mm (feature number), qjlq_{j}^{l} corresponds to the 95th percentile of the count distribution for sample jj. Normalized counts cij~=(cijsjl)(N)\tilde{c_{ij}} = (\frac{c_{ij}}{s_{j}^{l}})(N), where NN is an appropriately chosen normalization constant.

  • "TSS": Total sum scaling. Abundance is divided by the sequencing depth. For a given sample jj, normalized counts is defined:

    cij~=ciji=1Njcij\tilde{c_{ij}} = \frac{c_{ij}}{\sum_{i=1}^{N_{j}} c_{ij}}

    where cijc_{ij} is the counts of feature ii in sample jj, and NjN_{j} is the feature number of sample jj.

  • "eBay": Empirical Bayes approach to normalization <10.1186/s12859-020-03552-z>. The implemented method is not tree-related. In the output, the sum of each sample is 1.

  • "TMM": Trimmed mean of M-values method based on the normLibSizes function of edgeR package <doi: 10.1186/gb-2010-11-3-r25>.

  • "DESeq2": Median ratio of gene counts relative to geometric mean per gene based on the DESeq function of DESeq2 package <doi: 10.1186/s13059-014-0550-8>. This option can invoke the trans_diff class and extract the normalized data from the original result. Note that either group or formula should be provided. The scaling factor is defined:

    sj=Medianicij(j=1ncij)1/ns_{j} = Median_{i} \frac{c_{ij}}{\bigl( {\prod_{j=1}^{n} c_{ij}} \bigr) ^{1/n}}

    where cijc_{ij} is the counts of feature ii in sample jj, and nn is the total sample number.

  • "Wrench": Group-wise and sample-wise compositional bias factor <doi: 10.1186/s12864-018-5160-5>. Note that condition parameter is necesary to be passed to condition parameter in wrench function of Wrench package. As the input data must be microtable object, so the input condition parameter can be a column name of sample_table. The scaling factor is defined:

    sj=1pijWijXijXis_{j} = \frac{1}{p} \sum_{ij} W_{ij} \frac{X_{ij}}{\overline{X_{i}}}

    where XijX_{ij} represents the relative abundance (proportion) for feature ii in sample jj, Xi\overline{X_{i}} is the average proportion of feature ii across the dataset, WijW_{ij} represents a weight specific to each technique, and pp is the feature number in sample.

  • "RLE": Relative log expression.

Methods based on decostand function of vegan package:

  • "total": divide by margin total (default MARGIN = 1, i.e. rows - samples).

  • "max": divide by margin maximum (default MARGIN = 2, i.e. columns - features).

  • "normalize": make margin sum of squares equal to one (default MARGIN = 1).

  • "range": standardize values into range 0...1 (default MARGIN = 2). If all values are constant, they will be transformed to 0.

  • "standardize": scale x to zero mean and unit variance (default MARGIN = 2).

  • "pa": scale x to presence/absence scale (0/1).

  • "log": logarithmic transformation.

Other methods for transformation:

  • "AST": Arc sine square root transformation.

sample.size

default NULL; libray size for rarefaction when method = "rarefy" or "SRS". If not provided, use the minimum number across all samples. For "SRS" method, this parameter is passed to Cmin parameter of SRS function of SRS package.

rngseed

default 123; random seed. Available when method = "rarefy" or "SRS".

replace

default TRUE; see sample for the random sampling; Available when method = "rarefy".

pseudocount

default 1; add pseudocount for those features with 0 abundance when method = "clr".

intersect.no

default 10; the intersecting taxa number between paired sample for method = "GMPR".

ct.min

default 1; the minimum number of counts required to calculate ratios for method = "GMPR".

condition

default NULL; Only available when method = "Wrench". This parameter is passed to the condition parameter of wrench function in Wrench package It must be a column name of sample_table or a vector with same length of samples.

MARGIN

default NULL; 1 = samples, and 2 = features of abundance table; only available when method comes from decostand function of vegan package. If MARGIN is NULL, use the default value in decostand function.

logbase

default 2; The logarithm base.

...

parameters pass to vegan::decostand, or metagenomeSeq::cumNorm when method = "CSS", or edgeR::normLibSizes when method = "TMM" or "RLE", or trans_diff class when method = "DESeq2", or wrench function of Wrench package when method = "Wrench".

Returns

new microtable object or data.frame object.

Examples
newdataset <- t1$norm(method = "clr")
newdataset <- t1$norm(method = "log")

Method clone()

The objects of this class are cloneable with this method.

Usage
trans_norm$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `trans_norm$new`
## ------------------------------------------------

library(microeco)
data(dataset)
t1 <- trans_norm$new(dataset = dataset)

## ------------------------------------------------
## Method `trans_norm$norm`
## ------------------------------------------------

newdataset <- t1$norm(method = "clr")
newdataset <- t1$norm(method = "log")

Create trans_nullmodel object for null model related analysis.

Description

This class is a wrapper for a series of null model related approaches, including the mantel correlogram analysis of phylogenetic signal, beta nearest taxon index (betaNTI), beta net relatedness index (betaNRI), NTI, NRI and RCbray (Raup–Crick Bray–Curtis) calculations. See <doi:10.1111/j.1600-0587.2010.06548.x; 10.1890/ES10-00117.1; 10.1038/ismej.2013.93; 10.1038/s41598-017-17736-w> for the algorithms and applications.

Methods

Public methods


Method new()

Usage
trans_nullmodel$new(
  dataset = NULL,
  filter_thres = 0,
  taxa_number = NULL,
  group = NULL,
  select_group = NULL,
  env_cols = NULL,
  add_data = NULL,
  complete_na = FALSE
)
Arguments
dataset

the object of microtable Class.

filter_thres

default 0; the relative abundance threshold.

taxa_number

default NULL; how many taxa the user want to keep, if provided, filter_thres parameter will be forcible invalid.

group

default NULL; which column name in sample_table is selected as the group for the following selection.

select_group

default NULL; one or more elements in group, used to select samples.

env_cols

default NULL; number or name vector to select the environmental data in dataset$sample_table.

add_data

default NULL; provide environmental data table additionally.

complete_na

default FALSE; whether fill the NA in environmental data based on the method in mice package.

Returns

data_comm and data_tree in object.

Examples
data(dataset)
data(env_data_16S)
t1 <- trans_nullmodel$new(dataset, filter_thres = 0.0005, add_data = env_data_16S)

Method cal_mantel_corr()

Calculate mantel correlogram.

Usage
trans_nullmodel$cal_mantel_corr(
  use_env = NULL,
  break.pts = seq(0, 1, 0.02),
  cutoff = FALSE,
  ...
)
Arguments
use_env

default NULL; numeric or character vector to select env_data; if provide multiple variables or NULL, use PCA (principal component analysis) to reduce dimensionality.

break.pts

default seq(0, 1, 0.02); see break.pts parameter in mantel.correlog of vegan package.

cutoff

default FALSE; see cutoff parameter in mantel.correlog.

...

parameters pass to mantel.correlog function in vegan package.

Returns

res_mantel_corr in object.

Examples
\dontrun{
t1$cal_mantel_corr(use_env = "pH")
}

Method plot_mantel_corr()

Plot mantel correlogram.

Usage
trans_nullmodel$plot_mantel_corr(point_shape = 22, point_size = 3)
Arguments
point_shape

default 22; the number for selecting point shape type; see ggplot2 manual for the number meaning.

point_size

default 3; the point size.

Returns

ggplot.

Examples
\dontrun{
t1$plot_mantel_corr()
}

Method cal_betampd()

Calculate betaMPD (mean pairwise distance). Same with picante::comdist function, but faster.

Usage
trans_nullmodel$cal_betampd(abundance.weighted = TRUE)
Arguments
abundance.weighted

default TRUE; whether use abundance-weighted method.

Returns

res_betampd in object.

Examples
\donttest{
t1$cal_betampd(abundance.weighted = TRUE)
}

Method cal_betamntd()

Calculate betaMNTD (mean nearest taxon distance). Same with picante::comdistnt function, but faster.

Usage
trans_nullmodel$cal_betamntd(
  abundance.weighted = TRUE,
  exclude.conspecifics = FALSE,
  use_iCAMP = FALSE,
  use_iCAMP_force = TRUE,
  iCAMP_tempdir = NULL,
  ...
)
Arguments
abundance.weighted

default TRUE; whether use abundance-weighted method.

exclude.conspecifics

default FALSE; see exclude.conspecifics parameter in comdistnt function of picante package.

use_iCAMP

default FALSE; whether use bmntd.big function of iCAMP package to calculate betaMNTD. This method can store the phylogenetic distance matrix on the disk to lower the memory spending and perform the calculation parallelly.

use_iCAMP_force

default FALSE; whether use bmntd.big function of iCAMP package automatically when the feature number is large.

iCAMP_tempdir

default NULL; the temporary directory used to place the large tree file; If NULL; use the system user tempdir.

...

paremeters pass to iCAMP::pdist.big function.

Returns

res_betamntd in object.

Examples
\donttest{
t1$cal_betamntd(abundance.weighted = TRUE)
}

Method cal_ses_betampd()

Calculate standardized effect size of betaMPD, i.e. beta net relatedness index (betaNRI).

Usage
trans_nullmodel$cal_ses_betampd(
  runs = 1000,
  null.model = c("taxa.labels", "richness", "frequency", "sample.pool", "phylogeny.pool",
    "independentswap", "trialswap")[1],
  abundance.weighted = TRUE,
  iterations = 1000
)
Arguments
runs

default 1000; simulation runs.

null.model

default "taxa.labels"; The available options include "taxa.labels", "richness", "frequency", "sample.pool", "phylogeny.pool", "independentswap"and "trialswap"; see null.model parameter of ses.mntd function in picante package for the algorithm details.

abundance.weighted

default TRUE; whether use weighted abundance.

iterations

default 1000; iteration number for part null models to perform; see iterations parameter of picante::randomizeMatrix function.

Returns

res_ses_betampd in object.

Examples
\dontrun{
# only run 50 times for the example; default 1000
t1$cal_ses_betampd(runs = 50, abundance.weighted = TRUE)
}

Method cal_ses_betamntd()

Calculate standardized effect size of betaMNTD, i.e. beta nearest taxon index (betaNTI).

Usage
trans_nullmodel$cal_ses_betamntd(
  runs = 1000,
  null.model = c("taxa.labels", "richness", "frequency", "sample.pool", "phylogeny.pool",
    "independentswap", "trialswap")[1],
  abundance.weighted = TRUE,
  exclude.conspecifics = FALSE,
  use_iCAMP = FALSE,
  use_iCAMP_force = TRUE,
  iCAMP_tempdir = NULL,
  nworker = 2,
  iterations = 1000
)
Arguments
runs

default 1000; simulation number of null model.

null.model

default "taxa.labels"; The available options include "taxa.labels", "richness", "frequency", "sample.pool", "phylogeny.pool", "independentswap"and "trialswap"; see null.model parameter of ses.mntd function in picante package for the algorithm details.

abundance.weighted

default TRUE; whether use abundance-weighted method.

exclude.conspecifics

default FALSE; see comdistnt in picante package.

use_iCAMP

default FALSE; whether use bmntd.big function of iCAMP package to calculate betaMNTD. This method can store the phylogenetic distance matrix on the disk to lower the memory spending and perform the calculation parallelly.

use_iCAMP_force

default FALSE; whether to make use_iCAMP to be TRUE when the feature number is large.

iCAMP_tempdir

default NULL; the temporary directory used to place the large tree file; If NULL; use the system user tempdir.

nworker

default 2; the CPU thread number.

iterations

default 1000; iteration number for part null models to perform; see iterations parameter of picante::randomizeMatrix function.

Returns

res_ses_betamntd in object.

Examples
\dontrun{
# only run 50 times for the example; default 1000
t1$cal_ses_betamntd(runs = 50, abundance.weighted = TRUE, exclude.conspecifics = FALSE)
}

Method cal_rcbray()

Calculate Bray–Curtis-based Raup–Crick (RCbray) <doi: 10.1890/ES10-00117.1>.

Usage
trans_nullmodel$cal_rcbray(
  runs = 1000,
  verbose = TRUE,
  null.model = "independentswap"
)
Arguments
runs

default 1000; simulation runs.

verbose

default TRUE; whether show the calculation process message.

null.model

default "independentswap"; see more available options in randomizeMatrix function of picante package.

Returns

res_rcbray in object.

Examples
\dontrun{
# only run 50 times for the example; default 1000
t1$cal_rcbray(runs = 50)
}

Method cal_process()

Infer the ecological processes according to ses.betaMNTD/ses.betaMPD and rcbray.

Usage
trans_nullmodel$cal_process(use_betamntd = TRUE, group = NULL)
Arguments
use_betamntd

default TRUE; whether use ses.betaMNTD; if false, use ses.betaMPD.

group

default NULL; a column name in sample_table of microtable object. If provided, the analysis will be performed for each group instead of the whole.

Returns

res_process in object.

Examples
\dontrun{
t1$cal_process(use_betamntd = TRUE)
}

Method cal_NRI()

Calculates Nearest Relative Index (NRI), equivalent to -1 times the standardized effect size of MPD.

Usage
trans_nullmodel$cal_NRI(
  null.model = "taxa.labels",
  abundance.weighted = FALSE,
  runs = 999,
  ...
)
Arguments
null.model

default "taxa.labels"; Null model to use; see null.model parameter in ses.mpd function of picante package for available options.

abundance.weighted

default FALSE; Should mean nearest relative distances for each species be weighted by species abundance?

runs

default 999; Number of randomizations.

...

paremeters pass to ses.mpd function in picante package.

Returns

res_NRI in object, equivalent to -1 times ses.mpd.

Examples
\donttest{
# only run 50 times for the example; default 999
t1$cal_NRI(null.model = "taxa.labels", abundance.weighted = FALSE, runs = 50)
}

Method cal_NTI()

Calculates Nearest Taxon Index (NTI), equivalent to -1 times the standardized effect size of MNTD.

Usage
trans_nullmodel$cal_NTI(
  null.model = "taxa.labels",
  abundance.weighted = FALSE,
  runs = 999,
  ...
)
Arguments
null.model

default "taxa.labels"; Null model to use; see null.model parameter in ses.mntd function of picante package for available options.

abundance.weighted

default FALSE; Should mean nearest taxon distances for each species be weighted by species abundance?

runs

default 999; Number of randomizations.

...

paremeters pass to ses.mntd function in picante package.

Returns

res_NTI in object, equivalent to -1 times ses.mntd.

Examples
\donttest{
# only run 50 times for the example; default 999
t1$cal_NTI(null.model = "taxa.labels", abundance.weighted = TRUE, runs = 50)
}

Method cal_Cscore()

Calculates the (normalised) mean number of checkerboard combinations (C-score) using C.score function in bipartite package.

Usage
trans_nullmodel$cal_Cscore(by_group = NULL, ...)
Arguments
by_group

default NULL; one column name or number in sample_table; calculate C-score for different groups separately.

...

paremeters pass to bipartite::C.score function.

Returns

vector.

Examples
\dontrun{
t1$cal_Cscore(normalise = FALSE)
t1$cal_Cscore(by_group = "Group", normalise = FALSE)
}

Method cal_NST()

Calculate normalized stochasticity ratio (NST) based on the NST package.

Usage
trans_nullmodel$cal_NST(method = "tNST", group, ...)
Arguments
method

default "tNST"; 'tNST' or 'pNST'. See the help document of tNST or pNST function in NST package for more details.

group

a colname of sample_table in microtable object; the function can select the data from sample_table to generate a one-column (n x 1) matrix and provide it to the group parameter of tNST or pNST function.

...

paremeters pass to NST::tNST or NST::pNST function; see the document of corresponding function for more details.

Returns

res_NST stored in the object.

Examples
\dontrun{
t1$cal_NST(group = "Group", dist.method = "bray", output.rand = TRUE, SES = TRUE)
}

Method cal_NST_test()

Test the significance of NST difference between each pair of groups.

Usage
trans_nullmodel$cal_NST_test(method = "nst.boot", ...)
Arguments
method

default "nst.boot"; "nst.boot" or "nst.panova"; see NST::nst.boot function or NST::nst.panova function for the details.

...

paremeters pass to NST::nst.boot when method = "nst.boot" or NST::nst.panova when method = "nst.panova".

Returns

list. See the Return part of NST::nst.boot function or NST::nst.panova function in NST package.

Examples
\dontrun{
t1$cal_NST_test()
}

Method cal_NST_convert()

Convert NST paired long format table to symmetric matrix form.

Usage
trans_nullmodel$cal_NST_convert(column = 10)
Arguments
column

default 10; which column is selected for the conversion. See the columns of res_NST$index.pair stored in the object.

Returns

symmetric matrix.

Examples
\dontrun{
t1$cal_NST_convert(column = 10)
}

Method clone()

The objects of this class are cloneable with this method.

Usage
trans_nullmodel$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `trans_nullmodel$new`
## ------------------------------------------------

data(dataset)
data(env_data_16S)
t1 <- trans_nullmodel$new(dataset, filter_thres = 0.0005, add_data = env_data_16S)

## ------------------------------------------------
## Method `trans_nullmodel$cal_mantel_corr`
## ------------------------------------------------

## Not run: 
t1$cal_mantel_corr(use_env = "pH")

## End(Not run)

## ------------------------------------------------
## Method `trans_nullmodel$plot_mantel_corr`
## ------------------------------------------------

## Not run: 
t1$plot_mantel_corr()

## End(Not run)

## ------------------------------------------------
## Method `trans_nullmodel$cal_betampd`
## ------------------------------------------------


t1$cal_betampd(abundance.weighted = TRUE)


## ------------------------------------------------
## Method `trans_nullmodel$cal_betamntd`
## ------------------------------------------------


t1$cal_betamntd(abundance.weighted = TRUE)


## ------------------------------------------------
## Method `trans_nullmodel$cal_ses_betampd`
## ------------------------------------------------

## Not run: 
# only run 50 times for the example; default 1000
t1$cal_ses_betampd(runs = 50, abundance.weighted = TRUE)

## End(Not run)

## ------------------------------------------------
## Method `trans_nullmodel$cal_ses_betamntd`
## ------------------------------------------------

## Not run: 
# only run 50 times for the example; default 1000
t1$cal_ses_betamntd(runs = 50, abundance.weighted = TRUE, exclude.conspecifics = FALSE)

## End(Not run)

## ------------------------------------------------
## Method `trans_nullmodel$cal_rcbray`
## ------------------------------------------------

## Not run: 
# only run 50 times for the example; default 1000
t1$cal_rcbray(runs = 50)

## End(Not run)

## ------------------------------------------------
## Method `trans_nullmodel$cal_process`
## ------------------------------------------------

## Not run: 
t1$cal_process(use_betamntd = TRUE)

## End(Not run)

## ------------------------------------------------
## Method `trans_nullmodel$cal_NRI`
## ------------------------------------------------


# only run 50 times for the example; default 999
t1$cal_NRI(null.model = "taxa.labels", abundance.weighted = FALSE, runs = 50)


## ------------------------------------------------
## Method `trans_nullmodel$cal_NTI`
## ------------------------------------------------


# only run 50 times for the example; default 999
t1$cal_NTI(null.model = "taxa.labels", abundance.weighted = TRUE, runs = 50)


## ------------------------------------------------
## Method `trans_nullmodel$cal_Cscore`
## ------------------------------------------------

## Not run: 
t1$cal_Cscore(normalise = FALSE)
t1$cal_Cscore(by_group = "Group", normalise = FALSE)

## End(Not run)

## ------------------------------------------------
## Method `trans_nullmodel$cal_NST`
## ------------------------------------------------

## Not run: 
t1$cal_NST(group = "Group", dist.method = "bray", output.rand = TRUE, SES = TRUE)

## End(Not run)

## ------------------------------------------------
## Method `trans_nullmodel$cal_NST_test`
## ------------------------------------------------

## Not run: 
t1$cal_NST_test()

## End(Not run)

## ------------------------------------------------
## Method `trans_nullmodel$cal_NST_convert`
## ------------------------------------------------

## Not run: 
t1$cal_NST_convert(column = 10)

## End(Not run)

Create trans_venn object for the Venn diagram, petal plot and UpSet plot.

Description

This class is a wrapper for a series of intersection analysis related methods, including 2- to 5-way venn diagram, more than 5-way petal or UpSet plot and intersection transformations based on David et al. (2012) <doi:10.1128/AEM.01459-12>.

Methods

Public methods


Method new()

Usage
trans_venn$new(dataset, ratio = NULL, name_joint = "&")
Arguments
dataset

the object of microtable class or a matrix-like table (data.frame or matrix object). If dataset is a matrix-like table, features must be rows.

ratio

default NULL; NULL, "numratio" or "seqratio"; "numratio": calculate the percentage of feature number; "seqratio": calculate the percentage of feature abundance; NULL: no additional percentage.

name_joint

default "&"; the joint mark for generating multi-sample names.

Returns

data_details and data_summary stored in the object.

Examples
\donttest{
data(dataset)
t1 <- dataset$merge_samples("Group")
t1 <- trans_venn$new(dataset = t1, ratio = "numratio")
}

Method plot_venn()

Plot venn diagram.

Usage
trans_venn$plot_venn(
  color_circle = RColorBrewer::brewer.pal(8, "Dark2"),
  fill_color = TRUE,
  text_size = 4.5,
  text_name_size = 6,
  text_name_position = NULL,
  alpha = 0.3,
  linesize = 1.1,
  petal_plot = FALSE,
  petal_color = "#BEAED4",
  petal_color_center = "#BEBADA",
  petal_a = 4,
  petal_r = 1,
  petal_use_lim = c(-12, 12),
  petal_center_size = 40,
  petal_move_xy = 4,
  petal_move_k = 2.3,
  petal_move_k_count = 1.3,
  petal_text_move = 40,
  other_text_show = NULL,
  other_text_position = c(2, 2),
  other_text_size = 5
)
Arguments
color_circle

default RColorBrewer::brewer.pal(8, "Dark2"); color pallete.

fill_color

default TRUE; whether fill the area color.

text_size

default 4.5; text size in plot.

text_name_size

default 6; name size in plot.

text_name_position

default NULL; name position in plot.

alpha

default .3; alpha for transparency.

linesize

default 1.1; cycle line size.

petal_plot

default FALSE; whether use petal plot.

petal_color

default "#BEAED4"; color of the petals; If petal_color only has one color value, all the petals will be assigned with this color value. If petal_color has multiple colors, and the number of color values is smaller than the petal number, the function can append more colors automatically with the color interpolation.

petal_color_center

default "#BEBADA"; color of the center in the petal plot.

petal_a

default 4; the length of the ellipse.

petal_r

default 1; scaling up the size of the ellipse.

petal_use_lim

default c(-12, 12); the width of the plot.

petal_center_size

default 40; petal center circle size.

petal_move_xy

default 4; the distance of text to circle.

petal_move_k

default 2.3; the distance of title to circle.

petal_move_k_count

default 1.3; the distance of data text to circle.

petal_text_move

default 40; the distance between two data text.

other_text_show

default NULL; other characters used to show in the plot.

other_text_position

default c(1, 1); the text position for text in other_text_show.

other_text_size

default 5; the text size for text in other_text_show.

Returns

ggplot.

Examples
\donttest{
t1$plot_venn()
}

Method plot_bar()

Plot the intersections using histogram, i.e. UpSet plot. Especially useful when samples > 5.

Usage
trans_venn$plot_bar(
  left_plot = TRUE,
  sort_samples = FALSE,
  up_y_title = "Intersection size",
  up_y_title_size = 15,
  up_y_text_size = 8,
  up_bar_fill = "grey70",
  up_bar_width = 0.9,
  bottom_y_text_size = 12,
  bottom_height = 1,
  bottom_point_size = 3,
  bottom_point_color = "black",
  bottom_background_fill = "grey95",
  bottom_background_alpha = 1,
  bottom_line_width = 0.5,
  bottom_line_colour = "black",
  left_width = 0.3,
  left_bar_fill = "grey70",
  left_bar_alpha = 1,
  left_bar_width = 0.9,
  left_x_text_size = 10,
  left_background_fill = "white",
  left_background_alpha = 1
)
Arguments
left_plot

default TRUE; whether add the left bar plot to show the feature number of each sample.

sort_samples

default FALSE; TRUE is used to sort samples according to the number of features in each sample. FALSE means the sample order is same with that in sample_table of the raw dataset.

up_y_title

default "Intersection set"; y axis title of upper plot.

up_y_title_size

default 15; y axis title size of upper plot.

up_y_text_size

default 4; y axis text size of upper plot.

up_bar_fill

default "grey70"; bar fill color of upper plot.

up_bar_width

default 0.9; bar width of upper plot.

bottom_y_text_size

default 12; y axis text size, i.e. sample name size, of bottom sample plot.

bottom_height

default 1; bottom plot height relative to the upper bar plot. 1 represents the height of bottom plot is same with the upper bar plot.

bottom_point_size

default 3; point size of bottom plot.

bottom_point_color

default "black"; point color of bottom plot.

bottom_background_fill

default "grey95"; fill color for the striped background in the bottom sample plot. If the parameter length is 1, use "white" to distinguish the color stripes. If the parameter length is greater than 1, use all provided colors.

bottom_background_alpha

default 1; the color transparency for the parameter bottom_background_fill.

bottom_line_width

default 0.5; the line width in the bottom plot.

bottom_line_colour

default "black"; the line color in the bottom plot.

left_width

default 0.3; left bar plot width relative to the right bottom plot.

left_bar_fill

default "grey70"; fill color for the left bar plot presenting feature number.

left_bar_alpha

default 1; the color transparency for the parameter left_bar_fill.

left_bar_width

default 0.9; bar width of left plot.

left_x_text_size

default 10; x axis text size of the left bar plot.

left_background_fill

default "white"; fill color for the striped background in the left plot. If the parameter length is 1, use "white" to distinguish the color stripes. If the parameter length is greater than 1, use all provided colors.

left_background_alpha

default 1; the color transparency for the parameter left_background_fill.

Returns

a ggplot2 object.

Examples
\donttest{
t2 <- t1$plot_bar()
}

Method trans_comm()

Transform intersection result to community-like microtable object for further composition analysis.

Usage
trans_venn$trans_comm(use_frequency = TRUE)
Arguments
use_frequency

default TRUE; whether only use OTUs occurrence frequency, i.e. presence/absence data; if FALSE, use abundance data.

Returns

a new microtable class.

Examples
\donttest{
t2 <- t1$trans_comm(use_frequency = TRUE)
}

Method print()

Print the trans_venn object.

Usage
trans_venn$print()

Method clone()

The objects of this class are cloneable with this method.

Usage
trans_venn$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples

## ------------------------------------------------
## Method `trans_venn$new`
## ------------------------------------------------


data(dataset)
t1 <- dataset$merge_samples("Group")
t1 <- trans_venn$new(dataset = t1, ratio = "numratio")


## ------------------------------------------------
## Method `trans_venn$plot_venn`
## ------------------------------------------------


t1$plot_venn()


## ------------------------------------------------
## Method `trans_venn$plot_bar`
## ------------------------------------------------


t2 <- t1$plot_bar()


## ------------------------------------------------
## Method `trans_venn$trans_comm`
## ------------------------------------------------


t2 <- t1$trans_comm(use_frequency = TRUE)