Title: | Microbial Community Ecology Data Analysis |
---|---|
Description: | A series of statistical and plotting approaches in microbial community ecology based on the R6 class. The classes are designed for data preprocessing, taxa abundance plotting, alpha diversity analysis, beta diversity analysis, differential abundance test, null model analysis, network analysis, machine learning, environmental data analysis and functional analysis. |
Authors: | Chi Liu [aut, cre], Felipe R. P. Mansoldo [ctb], Minjie Yao [ctb], Xiangzhen Li [ctb] |
Maintainer: | Chi Liu <[email protected]> |
License: | GPL-3 |
Version: | 1.12.1 |
Built: | 2025-01-21 12:36:48 UTC |
Source: | https://github.com/chiliubio/microeco |
Copy an R6 class object
clone(x, deep = TRUE)
clone(x, deep = TRUE)
x |
R6 class object |
deep |
default TRUE; TRUE means deep copy, i.e. copied object is unlinked with the original one. |
identical but unlinked R6 object
data("dataset") clone(dataset)
data("dataset") clone(dataset)
The dataset arose from 16S rRNA gene amplicon sequencing of wetland soils in China <doi:10.1016/j.geoderma.2018.09.035>.
In dataset$sample_table
, the 'Group' column means Chinese inland wetlands (IW), coastal wetland (CW) and Tibet plateau wetlands (TW).
The column 'Type' denotes the sampling region: northeastern region (NE), northwest region (NW), North China area (NC),
middle-lower reaches of the Yangtze River (YML), southern coastal area (SC), upper reaches of the Yangtze River (YU) and Qinghai-Tibet Plateau (QTP).
The column 'Saline' represents the saline soils and non-saline soils.
data(dataset)
data(dataset)
An R6 class object
sample_table: sample information table
otu_table: species-community abundance table
tax_table: taxonomic table
phylo_tree: phylogenetic tree
taxa_abund: taxa abundance list with several tables for Phylum...Genus
alpha_diversity: alpha diversity table
beta_diversity: list with several beta diversity distance matrix
Remove all factors in a data frame
dropallfactors(x, unfac2num = FALSE, char2num = FALSE)
dropallfactors(x, unfac2num = FALSE, char2num = FALSE)
x |
data frame |
unfac2num |
default FALSE; whether try to convert all character columns to numeric; if FALSE, only try to convert column with factor attribute. Note that this can only transform the columns that may be transformed to numeric without using factor. |
char2num |
default FALSE; whether force all the character to be numeric class by using factor as an intermediate. |
data frame without factor
data("taxonomy_table_16S") taxonomy_table_16S[, 1] <- as.factor(taxonomy_table_16S[, 1]) str(dropallfactors(taxonomy_table_16S))
data("taxonomy_table_16S") taxonomy_table_16S[, 1] <- as.factor(taxonomy_table_16S[, 1]) str(dropallfactors(taxonomy_table_16S))
The environmental factors for the 16S example data
data(env_data_16S)
data(env_data_16S)
The FungalTraits database for fungi trait prediction
data(fungi_func_FungalTraits)
data(fungi_func_FungalTraits)
The FUNGuild database for fungi trait prediction
data(fungi_func_FUNGuild)
data(fungi_func_FUNGuild)
For the detailed tutorial on microeco package, please follow the links:
Online tutorial website: https://chiliubio.github.io/microeco_tutorial/
Download tutorial: https://github.com/ChiLiubio/microeco_tutorial/releases
For each R6 class, please open the help document by searching the class name.
For example, to search microtable class, please run the command help(microtable)
or ?microtable
.
Another way to open the help document of R6 class is to click the following links collected:microtable
trans_abund
trans_venn
trans_alpha
trans_beta
trans_diff
trans_network
trans_nullmodel
trans_classifier
trans_env
trans_func
trans_norm
To report bugs or discuss questions, please use Github Issues (https://github.com/ChiLiubio/microeco/issues). Before creating a new issue, please read the guideline (https://chiliubio.github.io/microeco_tutorial/notes.html#github-issues).
To cite microeco package in publications, please run the following command to get the reference: citation("microeco")
Reference:
Chi Liu, Yaoming Cui, Xiangzhen Li and Minjie Yao. 2021. microeco: an R package for data mining in microbial community ecology.
FEMS Microbiology Ecology, 97(2): fiaa255. DOI:10.1093/femsec/fiaa255
microtable
object to store and manage all the basic files.This class is a wrapper for a series of operations on the input files and basic manipulations,
including microtable object creation, data trimming, data filtering, rarefaction based on Paul et al. (2013) <doi:10.1371/journal.pone.0061217>, taxonomic abundance calculation,
alpha and beta diversity calculation based on the An et al. (2019) <doi:10.1016/j.geoderma.2018.09.035> and
Lozupone et al. (2005) <doi:10.1128/AEM.71.12.8228-8235.2005> and other basic operations.
Online tutorial: https://chiliubio.github.io/microeco_tutorial/
Download tutorial: https://github.com/ChiLiubio/microeco_tutorial/releases
microtable.
new()
microtable$new( otu_table, sample_table = NULL, tax_table = NULL, phylo_tree = NULL, rep_fasta = NULL, auto_tidy = FALSE )
otu_table
data.frame; The feature abundance table; rownames are features (e.g. OTUs/ASVs/species/genes); column names are samples.
sample_table
data.frame; default NULL; The sample information table; rownames are samples; columns are sample metadata; If not provided, the function can generate a table automatically according to the sample names in otu_table.
tax_table
data.frame; default NULL; The taxonomic information table; rownames are features; column names are taxonomic classes.
phylo_tree
phylo; default NULL; The phylogenetic tree that must be read with the read.tree
function of ape package.
rep_fasta
DNAStringSet
, list
or DNAbin
format; default NULL; The sequences.
The sequences should be read with the readDNAStringSet
function in Biostrings
package (DNAStringSet class),
read.fasta
function in seqinr
package (list class),
or read.FASTA
function in ape
package (DNAbin class).
auto_tidy
default FALSE; Whether tidy the files in the microtable
object automatically.
If TRUE, the function can invoke the tidy_dataset
function.
an object of class microtable
with the following components:
sample_table
The sample information table.
otu_table
The feature table.
tax_table
The taxonomic table.
phylo_tree
The phylogenetic tree.
rep_fasta
The sequence.
taxa_abund
default NULL; use cal_abund
function to calculate.
alpha_diversity
default NULL; use cal_alphadiv
function to calculate.
beta_diversity
default NULL; use cal_betadiv
function to calculate.
data(otu_table_16S) data(taxonomy_table_16S) data(sample_info_16S) data(phylo_tree_16S) m1 <- microtable$new(otu_table = otu_table_16S) m1 <- microtable$new(sample_table = sample_info_16S, otu_table = otu_table_16S, tax_table = taxonomy_table_16S, phylo_tree = phylo_tree_16S) # trim the files in the dataset m1$tidy_dataset()
filter_pollution()
Filter the features considered pollution in microtable$tax_table
.
This operation will remove any line of the microtable$tax_table
containing any the word in taxa parameter regardless of word case.
microtable$filter_pollution(taxa = c("mitochondria", "chloroplast"))
taxa
default c("mitochondria", "chloroplast")
; filter mitochondria and chloroplast, or others as needed.
None
m1$filter_pollution(taxa = c("mitochondria", "chloroplast"))
filter_taxa()
Filter the feature with low abundance and/or low occurrence frequency.
microtable$filter_taxa(rel_abund = 0, freq = 1, include_lowest = TRUE)
rel_abund
default 0; the relative abundance threshold, such as 0.0001.
freq
default 1; the occurrence frequency threshold. For example, the number 2 represents filtering the feature that occurs less than 2 times. A number smaller than 1 is also allowable. For instance, the number 0.1 represents filtering the feature that occurs in less than 10% samples.
include_lowest
default TRUE; whether include the feature with the threshold.
None
\donttest{ d1 <- clone(m1) d1$filter_taxa(rel_abund = 0.0001, freq = 0.2) }
rarefy_samples()
Rarefy communities to make all samples have same count number.
microtable$rarefy_samples( method = c("rarefy", "SRS")[1], sample.size = NULL, ... )
method
default c("rarefy", "SRS")[1]; "rarefy" represents the classical resampling like rrarefy
function of vegan
package.
"SRS" is scaling with ranked subsampling method based on the SRS package provided by Lukas Beule and Petr Karlovsky (2020) <DOI:10.7717/peerj.9593>.
sample.size
default NULL; libray size. If not provided, use the minimum number across all samples.
For "SRS" method, this parameter is passed to Cmin
parameter of SRS
function of SRS package.
...
parameters pass to norm
function of trans_norm
class.
None; rarefied dataset.
\donttest{ m1$rarefy_samples(sample.size = min(m1$sample_sums())) }
tidy_dataset()
Trim all the data in the microtable
object to make taxa and samples consistent. The results are intersections across data.
microtable$tidy_dataset(main_data = FALSE)
main_data
default FALSE; if TRUE, only basic data in microtable
object is trimmed. Otherwise, all data,
including taxa_abund
, alpha_diversity
and beta_diversity
, are all trimed.
None. The data in the object are tidied up.
If tax_table
is in object, its row names are totally same with the row names of otu_table
.
m1$tidy_dataset(main_data = TRUE)
add_rownames2taxonomy()
Add the rownames of microtable$tax_table
as its last column.
This is especially useful when the rownames of microtable$tax_table
are required as a taxonomic level
for the taxonomic abundance calculation and biomarker idenfification.
microtable$add_rownames2taxonomy(use_name = "OTU")
use_name
default "OTU"; The column name used in the tax_table
.
NULL, a new tax_table stored in the object.
\donttest{ m1$add_rownames2taxonomy() }
sample_sums()
Sum the species number for each sample.
microtable$sample_sums()
species number of samples.
\donttest{ m1$sample_sums() }
taxa_sums()
Sum the species number for each taxa.
microtable$taxa_sums()
species number of taxa.
\donttest{ m1$taxa_sums() }
sample_names()
Show sample names.
microtable$sample_names()
sample names.
\donttest{ m1$sample_names() }
taxa_names()
Show taxa names of tax_table.
microtable$taxa_names()
taxa names.
\donttest{ m1$taxa_names() }
rename_taxa()
Rename the features, including the rownames of otu_table
, rownames of tax_table
, tip labels of phylo_tree
and rep_fasta
.
microtable$rename_taxa(newname_prefix = "ASV_")
newname_prefix
default "ASV_"; the prefix of new names; new names will be newname_prefix + numbers according to the rownames order of otu_table
.
None; renamed dataset.
\donttest{ m1$rename_taxa() }
merge_samples()
Merge samples according to specific group to generate a new microtable
.
microtable$merge_samples(group)
group
a column name in sample_table
of microtable
object.
a new merged microtable object.
\donttest{ m1$merge_samples("Group") }
merge_taxa()
Merge taxa according to specific taxonomic rank to generate a new microtable
.
microtable$merge_taxa(taxa = "Genus")
taxa
default "Genus"; the specific rank in tax_table
.
a new merged microtable
object.
\donttest{ m1$merge_taxa(taxa = "Genus") }
save_table()
Save each basic data in microtable object as local file.
microtable$save_table(dirpath = "basic_files", sep = ",", ...)
dirpath
default "basic_files"; directory to save the tables, phylogenetic tree and sequences in microtable object. It will be created if not found.
sep
default ","; the field separator string, used to save tables. Same with sep
parameter in write.table
function.
default ','
correspond to the file name suffix 'csv'. The option '\t'
correspond to the file name suffix 'tsv'. For other options, suffix are all 'txt'.
...
parameters passed to write.table
.
\dontrun{ m1$save_table() }
cal_abund()
Calculate the taxonomic abundance at each taxonomic level or selected levels.
microtable$cal_abund( select_cols = NULL, rel = TRUE, merge_by = "|", split_group = FALSE, split_by = "&", split_column = NULL, split_special_char = "&&" )
select_cols
default NULL; numeric vector (column sequences) or character vector (column names of microtable$tax_table
);
applied to select columns to calculate abundances according to ordered hierarchical levels.
This parameter is very useful when only part of the columns are needed to calculate abundances.
rel
default TRUE; if TRUE, relative abundance is used; if FALSE, absolute abundance (i.e. raw values) will be summed.
merge_by
default "|"; the symbol to merge and concatenate taxonomic names of different levels.
split_group
default FALSE; if TRUE, split the rows to multiple rows according to one or more columns in tax_table
when there is multiple mapping information.
split_by
default "&"; Separator delimiting collapsed values; only available when split_group = TRUE
.
split_column
default NULL; one column name used for the splitting in tax_table for each abundance calculation;
only available when split_group = TRUE
. If not provided, the function will split each column that containing the split_by
character.
split_special_char
default "&&"; special character that will be used forcibly to split multiple mapping information in tax_table
by default
no matter split_group
setting.
taxa_abund
list in object.
\donttest{ m1$cal_abund() }
save_abund()
Save taxonomic abundance as local file.
microtable$save_abund( dirpath = "taxa_abund", merge_all = FALSE, rm_un = FALSE, rm_pattern = "__$", sep = ",", ... )
dirpath
default "taxa_abund"; directory to save the taxonomic abundance files. It will be created if not found.
merge_all
default FALSE; Whether merge all tables into one. The merged file format is generally called 'mpa' style.
rm_un
default FALSE; Whether remove unclassified taxa in which the name ends with '__' generally.
rm_pattern
default "__$"; The pattern searched through the merged taxonomic names. See also pattern
parameter in grepl
function.
Only available when rm_un = TRUE
. The default "__$" means removing the names end with '__'.
sep
default ","; the field separator string. Same with sep
parameter in write.table
function.
default ','
correspond to the file name suffix 'csv'. The option '\t'
correspond to the file name suffix 'tsv'. For other options, suffix are all 'txt'.
...
parameters passed to write.table
.
\dontrun{ m1$save_abund(dirpath = "taxa_abund") m1$save_abund(merge_all = TRUE, rm_un = TRUE, sep = "\t") }
cal_alphadiv()
Calculate alpha diversity.
microtable$cal_alphadiv(measures = NULL, PD = FALSE)
measures
default NULL; one or more indexes in c("Observed", "Coverage", "Chao1", "ACE", "Shannon", "Simpson", "InvSimpson", "Fisher", "Pielou")
;
The default NULL represents that all the measures are calculated. 'Shannon', 'Simpson' and 'InvSimpson' are calculated based on vegan::diversity
function;
'Chao1' and 'ACE' depend on the function vegan::estimateR
.
'Fisher' index relies on the function vegan::fisher.alpha
.
"Observed" means the observed species number in a community, i.e. richness.
"Coverage" represents good's coverage. It is defined:
where n is the total abundance of a sample, and f1 is the number of singleton (species with abundance 1) in the sample. "Pielou" denotes the Pielou evenness index. It is defined:
where H' is Shannon index, and S is the species number.
PD
default FALSE; whether Faith's phylogenetic diversity is calculated. The calculation depends on the function picante::pd
.
Note that the phylogenetic tree (phylo_tree
object in the data) is required for PD.
alpha_diversity stored in the object. The se.chao1 and se.ACE are the standard erros of Chao1 and ACE, respectively.
\donttest{ m1$cal_alphadiv(measures = NULL, PD = FALSE) class(m1$alpha_diversity) }
save_alphadiv()
Save alpha diversity table to the computer.
microtable$save_alphadiv(dirpath = "alpha_diversity")
dirpath
default "alpha_diversity"; directory name to save the alpha_diversity.csv file.
cal_betadiv()
Calculate beta diversity dissimilarity matrix, such as Bray-Curtis, Jaccard, and UniFrac. See An et al. (2019) <doi:10.1016/j.geoderma.2018.09.035> and Lozupone et al. (2005) <doi:10.1128/AEM.71.12.8228–8235.2005>.
microtable$cal_betadiv(method = NULL, unifrac = FALSE, binary = FALSE, ...)
method
default NULL; a character vector with one or more elements; c("bray", "jaccard")
is used when method = NULL
;
See the method
parameter in vegdist
function for more available options, such as 'aitchison' and 'robust.aitchison'.
unifrac
default FALSE; whether UniFrac indexes (weighted and unweighted) are calculated. Phylogenetic tree is necessary when unifrac = TRUE
.
binary
default FALSE; Whether convert abundance to binary data (presence/absence) when method
is not "jaccard".
TRUE is used for "jaccard" automatically.
...
parameters passed to vegdist
function of vegan package.
beta_diversity list stored in the object.
\donttest{ m1$cal_betadiv(unifrac = FALSE) class(m1$beta_diversity) }
save_betadiv()
Save beta diversity matrix to the computer.
microtable$save_betadiv(dirpath = "beta_diversity")
dirpath
default "beta_diversity"; directory name to save the beta diversity matrix files.
print()
Print the microtable object.
microtable$print()
clone()
The objects of this class are cloneable with this method.
microtable$clone(deep = FALSE)
deep
Whether to make a deep clone.
## ------------------------------------------------ ## Method `microtable$new` ## ------------------------------------------------ data(otu_table_16S) data(taxonomy_table_16S) data(sample_info_16S) data(phylo_tree_16S) m1 <- microtable$new(otu_table = otu_table_16S) m1 <- microtable$new(sample_table = sample_info_16S, otu_table = otu_table_16S, tax_table = taxonomy_table_16S, phylo_tree = phylo_tree_16S) # trim the files in the dataset m1$tidy_dataset() ## ------------------------------------------------ ## Method `microtable$filter_pollution` ## ------------------------------------------------ m1$filter_pollution(taxa = c("mitochondria", "chloroplast")) ## ------------------------------------------------ ## Method `microtable$filter_taxa` ## ------------------------------------------------ d1 <- clone(m1) d1$filter_taxa(rel_abund = 0.0001, freq = 0.2) ## ------------------------------------------------ ## Method `microtable$rarefy_samples` ## ------------------------------------------------ m1$rarefy_samples(sample.size = min(m1$sample_sums())) ## ------------------------------------------------ ## Method `microtable$tidy_dataset` ## ------------------------------------------------ m1$tidy_dataset(main_data = TRUE) ## ------------------------------------------------ ## Method `microtable$add_rownames2taxonomy` ## ------------------------------------------------ m1$add_rownames2taxonomy() ## ------------------------------------------------ ## Method `microtable$sample_sums` ## ------------------------------------------------ m1$sample_sums() ## ------------------------------------------------ ## Method `microtable$taxa_sums` ## ------------------------------------------------ m1$taxa_sums() ## ------------------------------------------------ ## Method `microtable$sample_names` ## ------------------------------------------------ m1$sample_names() ## ------------------------------------------------ ## Method `microtable$taxa_names` ## ------------------------------------------------ m1$taxa_names() ## ------------------------------------------------ ## Method `microtable$rename_taxa` ## ------------------------------------------------ m1$rename_taxa() ## ------------------------------------------------ ## Method `microtable$merge_samples` ## ------------------------------------------------ m1$merge_samples("Group") ## ------------------------------------------------ ## Method `microtable$merge_taxa` ## ------------------------------------------------ m1$merge_taxa(taxa = "Genus") ## ------------------------------------------------ ## Method `microtable$save_table` ## ------------------------------------------------ ## Not run: m1$save_table() ## End(Not run) ## ------------------------------------------------ ## Method `microtable$cal_abund` ## ------------------------------------------------ m1$cal_abund() ## ------------------------------------------------ ## Method `microtable$save_abund` ## ------------------------------------------------ ## Not run: m1$save_abund(dirpath = "taxa_abund") m1$save_abund(merge_all = TRUE, rm_un = TRUE, sep = "\t") ## End(Not run) ## ------------------------------------------------ ## Method `microtable$cal_alphadiv` ## ------------------------------------------------ m1$cal_alphadiv(measures = NULL, PD = FALSE) class(m1$alpha_diversity) ## ------------------------------------------------ ## Method `microtable$cal_betadiv` ## ------------------------------------------------ m1$cal_betadiv(unifrac = FALSE) class(m1$beta_diversity)
## ------------------------------------------------ ## Method `microtable$new` ## ------------------------------------------------ data(otu_table_16S) data(taxonomy_table_16S) data(sample_info_16S) data(phylo_tree_16S) m1 <- microtable$new(otu_table = otu_table_16S) m1 <- microtable$new(sample_table = sample_info_16S, otu_table = otu_table_16S, tax_table = taxonomy_table_16S, phylo_tree = phylo_tree_16S) # trim the files in the dataset m1$tidy_dataset() ## ------------------------------------------------ ## Method `microtable$filter_pollution` ## ------------------------------------------------ m1$filter_pollution(taxa = c("mitochondria", "chloroplast")) ## ------------------------------------------------ ## Method `microtable$filter_taxa` ## ------------------------------------------------ d1 <- clone(m1) d1$filter_taxa(rel_abund = 0.0001, freq = 0.2) ## ------------------------------------------------ ## Method `microtable$rarefy_samples` ## ------------------------------------------------ m1$rarefy_samples(sample.size = min(m1$sample_sums())) ## ------------------------------------------------ ## Method `microtable$tidy_dataset` ## ------------------------------------------------ m1$tidy_dataset(main_data = TRUE) ## ------------------------------------------------ ## Method `microtable$add_rownames2taxonomy` ## ------------------------------------------------ m1$add_rownames2taxonomy() ## ------------------------------------------------ ## Method `microtable$sample_sums` ## ------------------------------------------------ m1$sample_sums() ## ------------------------------------------------ ## Method `microtable$taxa_sums` ## ------------------------------------------------ m1$taxa_sums() ## ------------------------------------------------ ## Method `microtable$sample_names` ## ------------------------------------------------ m1$sample_names() ## ------------------------------------------------ ## Method `microtable$taxa_names` ## ------------------------------------------------ m1$taxa_names() ## ------------------------------------------------ ## Method `microtable$rename_taxa` ## ------------------------------------------------ m1$rename_taxa() ## ------------------------------------------------ ## Method `microtable$merge_samples` ## ------------------------------------------------ m1$merge_samples("Group") ## ------------------------------------------------ ## Method `microtable$merge_taxa` ## ------------------------------------------------ m1$merge_taxa(taxa = "Genus") ## ------------------------------------------------ ## Method `microtable$save_table` ## ------------------------------------------------ ## Not run: m1$save_table() ## End(Not run) ## ------------------------------------------------ ## Method `microtable$cal_abund` ## ------------------------------------------------ m1$cal_abund() ## ------------------------------------------------ ## Method `microtable$save_abund` ## ------------------------------------------------ ## Not run: m1$save_abund(dirpath = "taxa_abund") m1$save_abund(merge_all = TRUE, rm_un = TRUE, sep = "\t") ## End(Not run) ## ------------------------------------------------ ## Method `microtable$cal_alphadiv` ## ------------------------------------------------ m1$cal_alphadiv(measures = NULL, PD = FALSE) class(m1$alpha_diversity) ## ------------------------------------------------ ## Method `microtable$cal_betadiv` ## ------------------------------------------------ m1$cal_betadiv(unifrac = FALSE) class(m1$beta_diversity)
The OTU table of the 16S example data
data(otu_table_16S)
data(otu_table_16S)
The OTU table of the ITS example data
data(otu_table_ITS)
data(otu_table_ITS)
The phylogenetic tree of 16S example data
data(phylo_tree_16S)
data(phylo_tree_16S)
The modified FAPROTAX trait database
data(prok_func_FAPROTAX)
data(prok_func_FAPROTAX)
The modified NJC19 database
data(prok_func_NJC19_list)
data(prok_func_NJC19_list)
The sample information of 16S example data
data(sample_info_16S)
data(sample_info_16S)
The sample information of ITS example data
data(sample_info_ITS)
data(sample_info_ITS)
The KEGG data files used in the trans_func class
data(Tax4Fun2_KEGG)
data(Tax4Fun2_KEGG)
The taxonomic information of 16S example data
data(taxonomy_table_16S)
data(taxonomy_table_16S)
The taxonomic information of ITS example data
data(taxonomy_table_ITS)
data(taxonomy_table_ITS)
Clean up the taxonomic table to make taxonomic assignments consistent.
tidy_taxonomy( taxonomy_table, column = "all", pattern = c(".*unassigned.*", ".*uncultur.*", ".*unknown.*", ".*unidentif.*", ".*unclassified.*", ".*No blast hit.*", ".*Incertae.sedis.*"), replacement = "", ignore.case = TRUE, na_fill = "" )
tidy_taxonomy( taxonomy_table, column = "all", pattern = c(".*unassigned.*", ".*uncultur.*", ".*unknown.*", ".*unidentif.*", ".*unclassified.*", ".*No blast hit.*", ".*Incertae.sedis.*"), replacement = "", ignore.case = TRUE, na_fill = "" )
taxonomy_table |
a data.frame with taxonomic information (rows are features; columns are taxonomic levels);
or a microtable object with |
column |
default "all"; "all" or a number; 'all' represents cleaning up all the columns; a number represents cleaning up this specific column. |
pattern |
default c(".*unassigned.*", ".*uncultur.*", ".*unknown.*", ".*unidentif.*", ".*unclassified.*", ".*No blast hit.*", ".*Incertae.sedis.*");
the characters (regular expressions) to be removed or replaced; removed when parameter |
replacement |
default ""; the characters used to replace the character in |
ignore.case |
default TRUE; if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored during matching. |
na_fill |
default ""; used to replace |
data.frame
object.
data.frame
data("taxonomy_table_16S") tidy_taxonomy(taxonomy_table_16S)
data("taxonomy_table_16S") tidy_taxonomy(taxonomy_table_16S)
trans_abund
object for taxonomic abundance visualization.This class is a wrapper for the taxonomic abundance transformations and visualization (e.g., bar plot, boxplot, heatmap, pie chart and line chart).
The converted data style is the long-format for ggplot2
plot.
new()
trans_abund$new( dataset = NULL, taxrank = "Phylum", show = 0, ntaxa = 10, groupmean = NULL, group_morestats = FALSE, delete_taxonomy_lineage = TRUE, delete_taxonomy_prefix = TRUE, prefix = NULL, use_percentage = TRUE, input_taxaname = NULL, high_level = NULL, high_level_fix_nsub = NULL )
dataset
default NULL; the object of microtable
class.
taxrank
default "Phylum"; taxonomic level, i.e. a column name in tax_table
of the input object.
The function extracts the abundance from the taxa_abund
list according to the names in the list.
If the taxa_abund
list is NULL, the function can automatically calculate the relative abundance to generate taxa_abund
list.
show
default 0; the mean relative abundance threshold for filtering the taxa with low abundance.
ntaxa
default 10; how many taxa are selected to use. Taxa are ordered by abundance from high to low.
This parameter does not conflict with the parameter show
. Both can be used. ntaxa = NULL
means the parameter will be invalid.
groupmean
default NULL; calculate mean abundance for each group. Select a column name in microtable$sample_table
.
group_morestats
default FALSE; only available when groupmean
parameter is provided;
Whether output more statistics for each group, including min, max, median and quantile;
Thereinto, quantile25 and quantile75 denote 25% and 75% quantiles, respectively.
delete_taxonomy_lineage
default TRUE; whether delete the taxonomy lineage in front of the target level.
delete_taxonomy_prefix
default TRUE; whether delete the prefix of taxonomy, such as "g__".
prefix
default NULL; character string; available when delete_taxonomy_prefix = T
;
default NULL represents using the "letter+__", e.g. "k__" for Phylum level;
Please provide the customized prefix when it is not standard, otherwise the program can not correctly recognize it.
use_percentage
default TRUE; show the abundance percentage.
input_taxaname
default NULL; character vector; input taxa names to select some taxa.
high_level
default NULL; a taxonomic rank, such as "Phylum", used to add the taxonomic information of higher level. It is required for the legend with nested taxonomic levels in the bar plot or the higher taxonomic level in facets of y axis in the heatmap.
high_level_fix_nsub
default NULL; an integer, used to fix the number of selected abundant taxa in each taxon from higher taxonomic level.
If the total number under one taxon of higher level is less than the high_level_fix_nsub, the total number will be used.
When high_level_fix_nsub
is provided, the taxa number of higher level is calculated as: ceiling(ntaxa/high_level_fix_nsub)
.
Note that ntaxa
means either the parameter ntaxa
or the taxonomic number obtained by filtering according to the show
parameter.
data_abund
stored in the object. The column 'all_mean_abund' represents mean relative abundance across all the samples.
So the values in one taxon are all same across all the samples.
If the sum of column 'Abundance' in one sample is larger than 1, the 'Abundance', 'SD' and 'SE' has been multiplied by 100.
\donttest{ data(dataset) t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 10) }
plot_bar()
Bar plot.
trans_abund$plot_bar( color_values = RColorBrewer::brewer.pal(8, "Dark2"), bar_full = TRUE, bar_type = deprecated(), others_color = "grey90", facet = NULL, order_x = NULL, x_axis_name = NULL, barwidth = NULL, use_alluvium = FALSE, clustering = FALSE, clustering_plot = FALSE, cluster_plot_width = 0.2, facet_color = "grey95", strip_text = 11, legend_text_italic = FALSE, xtext_angle = 0, xtext_size = 10, xtext_keep = TRUE, xtitle_keep = TRUE, ytitle_size = 17, coord_flip = FALSE, ggnested = FALSE, high_level_add_other = FALSE )
color_values
default RColorBrewer::brewer.pal
(8, "Dark2"); colors palette for the bars.
bar_full
default TRUE; Whether the bar shows all the features (including 'Others').
Default TRUE
means total abundance are summed to 1 or 100 (percentage). FALSE
means 'Others' will not be shown.
bar_type
deprecated. Please use bar_full
argument instead.
others_color
default "grey90"; the color for "Others" taxa.
facet
default NULL; a character vector for the facet; group column name of sample_table
, such as, "Group"
;
If multiple facets are needed, please provide ordered names, such as c("Group", "Type")
.
The latter should have a finer scale than the former one;
Please adjust the facet orders in the plot by assigning factors in sample_table
before creating trans_abund
object or
assigning factors in the data_abund
table of trans_abund
object.
When multiple facets are used, please first install package ggh4x
using the command install.packages("ggh4x")
.
order_x
default NULL; vector; used to order the sample names in x axis; must be the samples vector, such as c("S1", "S3", "S2")
.
x_axis_name
NULL; a character string; a column name of sample_table in dataset; used to show the sample names in x axis.
barwidth
default NULL; bar width, see width
in geom_bar
.
use_alluvium
default FALSE; whether add alluvium plot. If TRUE
, please first install ggalluvial
package.
clustering
default FALSE; whether order samples by the clustering.
clustering_plot
default FALSE; whether add clustering plot.
If clustering_plot = TRUE
, clustering
will be also TRUE in any case for the clustering.
cluster_plot_width
default 0.2, the dendrogram plot width; available when clustering_plot = TRUE
.
facet_color
default "grey95"; facet background color.
strip_text
default 11; facet text size.
legend_text_italic
default FALSE; whether use italic in legend.
xtext_angle
default 0; number ranging from 0 to 90; used to adjust x axis text angle to reduce text overlap;
xtext_size
default 10; x axis text size.
xtext_keep
default TRUE; whether retain x text.
xtitle_keep
default TRUE; whether retain x title.
ytitle_size
default 17; y axis title size.
coord_flip
default FALSE; whether flip cartesian coordinates so that horizontal becomes vertical, and vertical becomes horizontal.
ggnested
default FALSE; whether use nested legend. Need ggnested
package to be installed (https://github.com/gmteunisse/ggnested).
To make it available, please assign high_level
parameter when creating the object.
high_level_add_other
default FALSE; whether add 'Others' (all the unknown taxa) in each taxon of higher taxonomic level.
Only available when ggnested = TRUE
.
ggplot2 object.
\donttest{ t1$plot_bar(facet = "Group", xtext_keep = FALSE) }
plot_heatmap()
Plot the heatmap.
trans_abund$plot_heatmap( color_values = rev(RColorBrewer::brewer.pal(n = 11, name = "RdYlBu")), facet = NULL, facet_switch = "y", x_axis_name = NULL, order_x = NULL, withmargin = TRUE, plot_numbers = FALSE, plot_text_size = 4, plot_breaks = NULL, margincolor = "white", plot_colorscale = "log10", min_abundance = 0.01, max_abundance = NULL, strip_text = 11, xtext_size = 10, ytext_size = 11, xtext_keep = TRUE, xtitle_keep = TRUE, grid_clean = TRUE, xtext_angle = 0, legend_title = "% Relative\nAbundance", pheatmap = FALSE, ... )
color_values
default rev(RColorBrewer::brewer.pal(n = 11, name = "RdYlBu")); colors palette for the plotting.
facet
default NULL; a character vector for the facet; a group column name of sample_table
, such as, "Group"
;
If multiple facets are needed, please provide ordered names, such as c("Group", "Type")
.
The latter should have a finer scale than the former one;
Please adjust the facet orders in the plot by assigning factors in sample_table
before creating trans_abund
object or
assigning factors in the data_abund
table of trans_abund
object.
When multiple facets are used, please first install package ggh4x
using the command install.packages("ggh4x")
.
facet_switch
default "y"; By default, the labels in facets are displayed on the top and right of the plot.
If "x", the top labels will be displayed to the bottom. If "y", the right-hand side labels will be displayed to the left. Can also be set to "both".
When the high_level
is found in the object, the function will generate facets for the higher taxonomy in y axis.
So the default "y" of the parameter is to make the visualization better when high_level
is found.
This parameter will be passed to the switch
parameter in ggplot2::facet_grid
or ggh4x::facet_nested
function.
x_axis_name
NULL; a character string; a column name of sample_table used to show the sample names in x axis.
order_x
default NULL; vector; used to order the sample names in x axis; must be the samples vector, such as, c("S1", "S3", "S2").
withmargin
default TRUE; whether retain the tile margin.
plot_numbers
default FALSE; whether plot the number in heatmap.
plot_text_size
default 4; If plot_numbers TRUE, text size in plot.
plot_breaks
default NULL; The legend breaks.
margincolor
default "white"; If withmargin TRUE, use this as the margin color.
plot_colorscale
default "log10"; color scale.
min_abundance
default .01; the minimum abundance percentage in plot.
max_abundance
default NULL; the maximum abundance percentage in plot, NULL reprensent the max percentage.
strip_text
default 11; facet text size.
xtext_size
default 10; x axis text size.
ytext_size
default 11; y axis text size.
xtext_keep
default TRUE; whether retain x text.
xtitle_keep
default TRUE; whether retain x title.
grid_clean
default TRUE; whether remove grid lines.
xtext_angle
default 0; number ranging from 0 to 90; used to adjust x axis text angle to reduce text overlap;
legend_title
default "% Relative\nAbundance"; legend title text.
pheatmap
default FALSE; whether use pheatmap package to plot the heatmap.
...
paremeters pass to pheatmap when pheatmap = TRUE.
ggplot2 object or grid object based on pheatmap.
\donttest{ t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 40) t1$plot_heatmap(facet = "Group", xtext_keep = FALSE, withmargin = FALSE) }
plot_box()
Box plot.
trans_abund$plot_box( color_values = RColorBrewer::brewer.pal(8, "Dark2"), group = NULL, show_point = FALSE, point_color = "black", point_size = 3, point_alpha = 0.3, plot_flip = FALSE, boxfill = TRUE, middlecolor = "grey95", middlesize = 1, xtext_angle = 0, xtext_size = 10, ytitle_size = 17, ... )
color_values
default RColorBrewer::brewer.pal
(8, "Dark2"); colors palette for the box.
group
default NULL; a column name of sample table to show abundance across groups.
show_point
default FALSE; whether show points in plot.
point_color
default "black"; If show_point TRUE; use the color
point_size
default 3; If show_point TRUE; use the size
point_alpha
default .3; If show_point TRUE; use the transparency.
plot_flip
default FALSE; Whether rotate plot.
boxfill
default TRUE; Whether fill the box with colors.
middlecolor
default "grey95"; The middle line color.
middlesize
default 1; The middle line size.
xtext_angle
default 0; number ranging from 0 to 90; used to adjust x axis text angle to reduce text overlap;
xtext_size
default 10; x axis text size.
ytitle_size
default 17; y axis title size.
...
parameters pass to geom_boxplot
function.
ggplot2 object.
\donttest{ t1$plot_box(group = "Group") }
plot_line()
Plot the line chart.
trans_abund$plot_line( color_values = RColorBrewer::brewer.pal(8, "Dark2"), plot_SE = TRUE, position = position_dodge(0.1), errorbar_size = 1, errorbar_width = 0.1, point_size = 3, point_alpha = 0.8, line_size = 0.8, line_alpha = 0.8, line_type = 1, xtext_angle = 0, xtext_size = 10, ytitle_size = 17 )
color_values
default RColorBrewer::brewer.pal
(8, "Dark2"); colors palette for the points and lines.
plot_SE
default TRUE; TRUE: the errorbar is ; FALSE: the errorbar is
.
position
default position_dodge(0.1); Position adjustment, either as a string (such as "identity"), or the result of a call to a position adjustment function.
errorbar_size
default 1; errorbar line size.
errorbar_width
default 0.1; errorbar width.
point_size
default 3; point size for taxa.
point_alpha
default 0.8; point transparency.
line_size
default 0.8; line size.
line_alpha
default 0.8; line transparency.
line_type
default 1; an integer; line type.
xtext_angle
default 0; number ranging from 0 to 90; used to adjust x axis text angle to reduce text overlap;
xtext_size
default 10; x axis text size.
ytitle_size
default 17; y axis title size.
ggplot2 object.
\donttest{ t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 5) t1$plot_line(point_size = 3) t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 5, groupmean = "Group") t1$plot_line(point_size = 5, errorbar_size = 1, xtext_angle = 30) }
plot_pie()
Pie chart.
trans_abund$plot_pie( color_values = RColorBrewer::brewer.pal(8, "Dark2"), facet_nrow = 1, strip_text = 11, add_label = FALSE, legend_text_italic = FALSE )
color_values
default RColorBrewer::brewer.pal
(8, "Dark2"); colors palette for each section.
facet_nrow
default 1; how many rows in the plot.
strip_text
default 11; sample title size.
add_label
default FALSE; Whether add the percentage label in each section of pie chart.
legend_text_italic
default FALSE; whether use italic in legend.
ggplot2 object.
\donttest{ t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group") t1$plot_pie(facet_nrow = 1) }
plot_donut()
Donut chart based on the ggpubr::ggdonutchart
function.
trans_abund$plot_donut( color_values = RColorBrewer::brewer.pal(8, "Dark2"), label = TRUE, facet_nrow = 1, legend_text_italic = FALSE, ... )
color_values
default RColorBrewer::brewer.pal
(8, "Dark2"); colors palette for the donut.
label
default TRUE; whether show the percentage label.
facet_nrow
default 1; how many rows in the plot.
legend_text_italic
default FALSE; whether use italic in legend.
...
parameters passed to ggpubr::ggdonutchart
.
combined ggplot2 objects list, generated by ggpubr::ggarrange
function.
\dontrun{ t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group") t1$plot_donut(label = TRUE) }
plot_radar()
Radar chart based on the ggradar
package (https://github.com/ricardo-bion/ggradar).
trans_abund$plot_radar( color_values = RColorBrewer::brewer.pal(8, "Dark2"), ... )
color_values
default RColorBrewer::brewer.pal
(8, "Dark2"); colors palette for samples.
...
parameters passed to ggradar::ggradar
function except group.colours parameter.
ggplot2 object.
\dontrun{ t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group") t1$plot_radar() }
plot_tern()
Ternary diagrams based on the ggtern
package.
trans_abund$plot_tern( color_values = RColorBrewer::brewer.pal(8, "Dark2"), color_legend_guide_size = 4 )
color_values
default RColorBrewer::brewer.pal
(8, "Dark2"); colors palette for the samples.
color_legend_guide_size
default 4; The size of legend guide for color.
ggplot2 object.
\dontrun{ t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group") t1$plot_tern() }
print()
Print the trans_abund object.
trans_abund$print()
clone()
The objects of this class are cloneable with this method.
trans_abund$clone(deep = FALSE)
deep
Whether to make a deep clone.
## ------------------------------------------------ ## Method `trans_abund$new` ## ------------------------------------------------ data(dataset) t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 10) ## ------------------------------------------------ ## Method `trans_abund$plot_bar` ## ------------------------------------------------ t1$plot_bar(facet = "Group", xtext_keep = FALSE) ## ------------------------------------------------ ## Method `trans_abund$plot_heatmap` ## ------------------------------------------------ t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 40) t1$plot_heatmap(facet = "Group", xtext_keep = FALSE, withmargin = FALSE) ## ------------------------------------------------ ## Method `trans_abund$plot_box` ## ------------------------------------------------ t1$plot_box(group = "Group") ## ------------------------------------------------ ## Method `trans_abund$plot_line` ## ------------------------------------------------ t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 5) t1$plot_line(point_size = 3) t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 5, groupmean = "Group") t1$plot_line(point_size = 5, errorbar_size = 1, xtext_angle = 30) ## ------------------------------------------------ ## Method `trans_abund$plot_pie` ## ------------------------------------------------ t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group") t1$plot_pie(facet_nrow = 1) ## ------------------------------------------------ ## Method `trans_abund$plot_donut` ## ------------------------------------------------ ## Not run: t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group") t1$plot_donut(label = TRUE) ## End(Not run) ## ------------------------------------------------ ## Method `trans_abund$plot_radar` ## ------------------------------------------------ ## Not run: t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group") t1$plot_radar() ## End(Not run) ## ------------------------------------------------ ## Method `trans_abund$plot_tern` ## ------------------------------------------------ ## Not run: t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group") t1$plot_tern() ## End(Not run)
## ------------------------------------------------ ## Method `trans_abund$new` ## ------------------------------------------------ data(dataset) t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 10) ## ------------------------------------------------ ## Method `trans_abund$plot_bar` ## ------------------------------------------------ t1$plot_bar(facet = "Group", xtext_keep = FALSE) ## ------------------------------------------------ ## Method `trans_abund$plot_heatmap` ## ------------------------------------------------ t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 40) t1$plot_heatmap(facet = "Group", xtext_keep = FALSE, withmargin = FALSE) ## ------------------------------------------------ ## Method `trans_abund$plot_box` ## ------------------------------------------------ t1$plot_box(group = "Group") ## ------------------------------------------------ ## Method `trans_abund$plot_line` ## ------------------------------------------------ t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 5) t1$plot_line(point_size = 3) t1 <- trans_abund$new(dataset = dataset, taxrank = "Genus", ntaxa = 5, groupmean = "Group") t1$plot_line(point_size = 5, errorbar_size = 1, xtext_angle = 30) ## ------------------------------------------------ ## Method `trans_abund$plot_pie` ## ------------------------------------------------ t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group") t1$plot_pie(facet_nrow = 1) ## ------------------------------------------------ ## Method `trans_abund$plot_donut` ## ------------------------------------------------ ## Not run: t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group") t1$plot_donut(label = TRUE) ## End(Not run) ## ------------------------------------------------ ## Method `trans_abund$plot_radar` ## ------------------------------------------------ ## Not run: t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group") t1$plot_radar() ## End(Not run) ## ------------------------------------------------ ## Method `trans_abund$plot_tern` ## ------------------------------------------------ ## Not run: t1 <- trans_abund$new(dataset = dataset, taxrank = "Phylum", ntaxa = 6, groupmean = "Group") t1$plot_tern() ## End(Not run)
trans_alpha
object for alpha diversity statistics and visualization.This class is a wrapper for a series of alpha diversity analysis, including the statistics and visualization.
new()
trans_alpha$new( dataset = NULL, group = NULL, by_group = NULL, by_ID = NULL, order_x = NULL )
dataset
microtable
object.
group
default NULL; a column name of sample_table
in the input microtable object used for the statistics across groups.
by_group
default NULL; a column name of sample_table
used to perform the differential test
among groups (from group
parameter) for each group (from by_group
parameter) separately.
by_ID
default NULL; a column name of sample_table
used to perform paired T test or paired Wilcoxon test for the paired data,
such as continuous sampling of individual animals or plant compartments for different plant species (ID).
So by_ID
in sample_table should be the smallest unit of sample collection without any repetition in it.
When the by_ID
parameter is provided, the function can automatically perform paired test, and no more parameters is required.
order_x
default NULL; a column name of sample_table
or a vector with sample names. If provided, sort samples using factor
.
data_alpha
and data_stat
stored in the object.
\donttest{ data(dataset) t1 <- trans_alpha$new(dataset = dataset, group = "Group") }
cal_diff()
Differential test on alpha diversity.
trans_alpha$cal_diff( measure = NULL, method = c("KW", "KW_dunn", "wilcox", "t.test", "anova", "scheirerRayHare", "lm", "lme", "betareg", "glmm", "glmm_beta")[1], formula = NULL, p_adjust_method = "fdr", KW_dunn_letter = TRUE, alpha = 0.05, anova_post_test = "duncan.test", anova_varequal_test = FALSE, return_model = FALSE, ... )
measure
default NULL; character vector; If NULL, all indexes will be used; see names of microtable$alpha_diversity
,
e.g. c("Observed", "Chao1", "Shannon")
.
method
default "KW"; see the following available options:
Kruskal-Wallis Rank Sum Test for all groups (>= 2)
Dunn's Kruskal-Wallis Multiple Comparisons <10.1080/00401706.1964.10490181> based on dunnTest
function in FSA
package
Wilcoxon Rank Sum Test for all paired groups
When by_ID
parameter is provided in creating the object of the class, paired Wilcoxon test will be performed.
Student's t-Test for all paired groups.
When by_ID
parameter is provided in creating the object of the class, paired t-test will be performed.
Variance analysis. For one-way anova, the default post hoc test is Duncan's new multiple range test.
Please use anova_post_test
parameter to change the post hoc method.
For multi-way anova, Please use formula
parameter to specify the model and see aov
for more details
Scheirer-Ray-Hare test (nonparametric test) for a two-way factorial experiment;
see scheirerRayHare
function of rcompanion
package
Linear Model based on the lm
function
Linear Mixed Effect Model based on the lmerTest
package
Beta Regression for Rates and Proportions based on the betareg
package
Generalized linear mixed model (GLMM) based on the glmmTMB
package.
A family function can be provided using parameter passing, such as: family = glmmTMB::lognormal(link = "log")
Generalized linear mixed model (GLMM) with a family function of beta distribution.
This is an extension of the GLMM model in 'glmm'
option.
The only difference is in glmm_beta
the family function is fixed with the beta distribution function,
facilitating the fitting for proportional data (ranging from 0 to 1). The link function is fixed with "logit"
.
formula
default NULL; applied to two-way or multi-factor analysis when
method is "anova"
, "scheirerRayHare"
, "lm"
, "lme"
, "betareg"
or "glmm"
;
specified set for independent variables, i.e. the latter part of a general formula,
such as 'block + N*P*K'
.
p_adjust_method
default "fdr" (for "KW", "wilcox", "t.test" methods) or "holm" (for "KW_dunn"); P value adjustment method;
For method = 'KW', 'wilcox' or 't.test'
, please see method
parameter of p.adjust
function for available options;
For method = 'KW_dunn'
, please see dunn.test::p.adjustment.methods
for available options.
KW_dunn_letter
default TRUE; For method = 'KW_dunn'
, TRUE
denotes significances are presented by letters;
FALSE
means significances are shown by asterisk for paired comparison.
alpha
default 0.05; Significant level; used for generating significance letters when method is 'anova' or 'KW_dunn'.
anova_post_test
default "duncan.test". The post hoc test method for one-way anova.
The default option represents the Duncan's new multiple range test.
Other available options include "LSD.test" (LSD post hoc test) and "HSD.test" (HSD post hoc test).
All those are the function names from agricolae
package.
anova_varequal_test
default FALSE; whether conduct Levene's Test for equality of variances. Only available for one-way anova. Significant P value means the variance among groups is not equal.
return_model
default FALSE; whether return the original "lm", "lmer" or "glmm" model list in the object.
...
parameters passed to kruskal.test
(when method = "KW"
) or wilcox.test
function (when method = "wilcox"
) or
dunnTest
function of FSA
package (when method = "KW_dunn"
) or
agricolae::duncan.test
/agricolae::LSD.test
/agricolae::HSD.test
(when method = "anova"
, one-way anova) or
rcompanion::scheirerRayHare
(when method = "scheirerRayHare"
) or
stats::lm
(when method = "lm"
) or
lmerTest::lmer
(when method = "lme"
) or
betareg::betareg
(when method = "betareg"
) or
glmmTMB::glmmTMB
(when method = "glmm"
).
res_diff
, stored in object with the format data.frame
.
When method is "betareg", "lm", "lme" or "glmm",
"Estimate" and "Std.Error" columns represent the fitted coefficient and its standard error, respectively.
\donttest{ t1$cal_diff(method = "KW") t1$cal_diff(method = "anova") t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group") t1$cal_diff(method = "anova") }
plot_alpha()
Plot the alpha diversity.
Box plot (and others for visualizing data in groups of single factor) is used for the visualization of alpha diversity when the group
is found in the object.
When the formula is found in the res_diff
table in the object,
heatmap is employed automatically to show the significances of differential test for multiple indexes,
and errorbar (coefficient and standard errors) can be used for single index.
trans_alpha$plot_alpha( plot_type = "ggboxplot", color_values = RColorBrewer::brewer.pal(8, "Dark2"), measure = "Shannon", group = NULL, add = NULL, add_sig = TRUE, add_sig_label = "Significance", add_sig_text_size = 3.88, add_sig_label_num_dec = 4, order_x_mean = FALSE, y_start = 0.1, y_increase = 0.05, xtext_angle = 30, xtext_size = 13, ytitle_size = 17, bar_width = 0.9, bar_alpha = 0.8, dodge_width = 0.9, plot_SE = TRUE, errorbar_size = 1, errorbar_width = 0.2, errorbar_addpoint = TRUE, errorbar_color_black = FALSE, point_size = 3, point_alpha = 0.8, add_line = FALSE, line_size = 0.8, line_type = 2, line_color = "grey50", line_alpha = 0.5, heatmap_cell = "P.unadj", heatmap_sig = "Significance", heatmap_x = "Factors", heatmap_y = "Measure", heatmap_lab_fill = "P value", coefplot_sig_pos = 2, ... )
plot_type
default "ggboxplot"; plot type; available options include "ggboxplot", "ggdotplot", "ggviolin",
"ggstripchart", "ggerrorplot", "errorbar" and "barerrorbar".
The options starting with "gg" are function names coming from ggpubr
package.
All those methods with ggpubr
package use the data_alpha
table in the object.
"errorbar" represents Mean±SD or Mean±SE plot based on ggplot2
package by invoking the data_stat
table in the object.
"barerrorbar" denotes "bar plot + error bar". It is similar with "errorbar" and has a bar plot.
color_values
default RColorBrewer::brewer.pal
(8, "Dark2"); color pallete for groups.
measure
default "Shannon"; one alpha diversity index in the object.
group
default NULL; group name used for the plot.
add
default NULL; add another plot element; passed to the add
parameter of the function (e.g., ggboxplot
) from ggpubr
package
when plot_type
starts with "gg" (functions coming from ggpubr package).
add_sig
default TRUE; whether add significance label using the result of cal_diff
function, i.e. object$res_diff
;
This is manily designed to add post hoc test of anova or other significances to make the label mapping easy.
add_sig_label
default "Significance"; select a colname of object$res_diff
for the label text when 'Letter' is not in the table,
such as 'P.adj' or 'Significance'.
add_sig_text_size
default 3.88; the size of text in added label.
add_sig_label_num_dec
default 4; reserved decimal places when the parameter add_sig_label
use numeric column, like 'P.adj'.
order_x_mean
default FALSE; whether order x axis by the means of groups from large to small.
y_start
default 0.1; the y axis value from which to add the significance asterisk label;
the default 0.1 means max(values) + 0.1 * (max(values) - min(values))
.
y_increase
default 0.05; the increasing y axia space to add the label (asterisk or letter); the default 0.05 means 0.05 * (max(values) - min(values))
;
this parameter is also used to label the letters of anova result with the fixed space.
xtext_angle
default 30; number (e.g. 30). Angle of text in x axis.
xtext_size
default 13; x axis text size. NULL means the default size in ggplot2.
ytitle_size
default 17; y axis title size.
bar_width
default 0.9; the bar width when plot_type = "barerrorbar"
.
bar_alpha
default 0.8; the alpha of bar color when plot_type = "barerrorbar"
.
dodge_width
default 0.9; the dodge width used in position_dodge
function of ggplot2 package when plot_type
is "errorbar" or "barerrorbar".
plot_SE
default TRUE; TRUE: the errorbar is ; FALSE: the errorbar is
. Available when
plot_type
is "errorbar" or "barerrorbar".
errorbar_size
default 1; errorbar size. Available when plot_type
is "errorbar" or "barerrorbar".
errorbar_width
default 0.2; errorbar width. Available when plot_type
is "errorbar" or "barerrorbar" and by_group
is NULL.
errorbar_addpoint
default TRUE; whether add point for mean. Available when plot_type
is "errorbar" or "barerrorbar" and by_group
is NULL.
errorbar_color_black
default FALSE; whether use black for the color of errorbar when plot_type
is "errorbar" or "barerrorbar".
point_size
default 3; point size for taxa. Available when plot_type
is "errorbar" or "barerrorbar".
point_alpha
default 0.8; point transparency. Available when plot_type
is "errorbar" or "barerrorbar".
add_line
default FALSE; whether add line. Available when plot_type
is "errorbar" or "barerrorbar".
line_size
default 0.8; line size when add_line = TRUE
. Available when plot_type
is "errorbar" or "barerrorbar".
line_type
default 2; an integer; line type when add_line = TRUE
. The available case is same with line_size
.
line_color
default "grey50"; line color when add_line = TRUE
. Available when by_group
is NULL. Other available case is same with line_size
.
line_alpha
default 0.5; line transparency when add_line = TRUE
. The available case is same with line_size
.
heatmap_cell
default "P.unadj"; the column of res_diff
table for the cell of heatmap when formula with multiple factors is found in the method.
heatmap_sig
default "Significance"; the column of res_diff
for the significance label of heatmap.
heatmap_x
default "Factors"; the column of res_diff
for the x axis of heatmap.
heatmap_y
default "Taxa"; the column of res_diff
for the y axis of heatmap.
heatmap_lab_fill
default "P value"; legend title of heatmap.
coefplot_sig_pos
default 2; Significance label position in the coefficient point and errorbar plot.
The formula is Estimate + coefplot_sig_pos * Std.Error
.
This plot is used when there is only one measure found in the table,
and 'Estimate' and 'Std.Error' are both in the column names (such as for lm
and lme methods
).
The x axis is 'Estimate', and y axis denotes 'Factors'.
When coefplot_sig_pos is a negative value, the label is in the left of the errorbar.
Errorbar size and width in the coefficient point plot can be adjusted with the parameters errorbar_size
and errorbar_width
.
Point size and alpha can be adjusted with parameters point_size
and point_alpha
.
The significance label size can be adjusted with parameter add_sig_text_size
.
Furthermore, the vertical line around 0 can be adjusted with parameters line_size
, line_type
, line_color
and line_alpha
.
...
parameters passing to ggpubr::ggboxplot
function (or other functions shown by plot_type
parameter when it starts with "gg") or
plot_cor
function in trans_env
class for the heatmap of multiple factors when formula is found in the res_diff
of the object.
ggplot.
\donttest{ t1 <- trans_alpha$new(dataset = dataset, group = "Group") t1$cal_diff(method = "wilcox") t1$plot_alpha(measure = "Shannon", add_sig = TRUE) t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group") t1$cal_diff(method = "wilcox") t1$plot_alpha(measure = "Shannon", add_sig = TRUE) }
print()
Print the trans_alpha object.
trans_alpha$print()
clone()
The objects of this class are cloneable with this method.
trans_alpha$clone(deep = FALSE)
deep
Whether to make a deep clone.
## ------------------------------------------------ ## Method `trans_alpha$new` ## ------------------------------------------------ data(dataset) t1 <- trans_alpha$new(dataset = dataset, group = "Group") ## ------------------------------------------------ ## Method `trans_alpha$cal_diff` ## ------------------------------------------------ t1$cal_diff(method = "KW") t1$cal_diff(method = "anova") t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group") t1$cal_diff(method = "anova") ## ------------------------------------------------ ## Method `trans_alpha$plot_alpha` ## ------------------------------------------------ t1 <- trans_alpha$new(dataset = dataset, group = "Group") t1$cal_diff(method = "wilcox") t1$plot_alpha(measure = "Shannon", add_sig = TRUE) t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group") t1$cal_diff(method = "wilcox") t1$plot_alpha(measure = "Shannon", add_sig = TRUE)
## ------------------------------------------------ ## Method `trans_alpha$new` ## ------------------------------------------------ data(dataset) t1 <- trans_alpha$new(dataset = dataset, group = "Group") ## ------------------------------------------------ ## Method `trans_alpha$cal_diff` ## ------------------------------------------------ t1$cal_diff(method = "KW") t1$cal_diff(method = "anova") t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group") t1$cal_diff(method = "anova") ## ------------------------------------------------ ## Method `trans_alpha$plot_alpha` ## ------------------------------------------------ t1 <- trans_alpha$new(dataset = dataset, group = "Group") t1$cal_diff(method = "wilcox") t1$plot_alpha(measure = "Shannon", add_sig = TRUE) t1 <- trans_alpha$new(dataset = dataset, group = "Type", by_group = "Group") t1$cal_diff(method = "wilcox") t1$plot_alpha(measure = "Shannon", add_sig = TRUE)
trans_beta
object for beta-diversity analysisThis class is a wrapper for a series of beta-diversity related analysis,
including ordination analysis based on An et al. (2019) <doi:10.1016/j.geoderma.2018.09.035>, group distance comparision,
clustering, perMANOVA based on Anderson al. (2008) <doi:10.1111/j.1442-9993.2001.01070.pp.x>, ANOSIM and PERMDISP.
Note that the beta diversity analysis methods related with environmental variables are encapsulated within the trans_env
class.
new()
trans_beta$new(dataset = NULL, measure = NULL, group = NULL)
dataset
the object of microtable
class.
measure
default NULL; a matrix name stored in microtable$beta_diversity
list, such as "bray" or "jaccard", or a customized matrix;
used for ordination, manova, group distance comparision, etc.;
Please see cal_betadiv
function of microtable
class for more details.
group
default NULL; sample group used for manova, betadisper or group distance comparision.
measure, group and dataset stored in the object.
data(dataset) t1 <- trans_beta$new(dataset = dataset, measure = "bray", group = "Group")
cal_ordination()
Unconstrained ordination.
trans_beta$cal_ordination( method = "PCoA", ncomp = 3, trans = FALSE, scale_species = FALSE, scale_species_ratio = 0.8, orthoI = NA, ordination = deprecated(), ... )
method
default "PCoA"; "PCoA", "NMDS", "PCA", "DCA", "PLS-DA" or "OPLS-DA". PCoA: principal coordinates analysis; NMDS: non-metric multidimensional scaling, PCA: principal component analysis; DCA: detrended correspondence analysis; PLS-DA: partial least squares discriminant analysis; OPLS-DA: orthogonal partial least squares discriminant analysis. For the methods details, please refer to the papers <doi:10.1111/j.1574-6941.2007.00375.x> (for PCoA, NMDS, PCA and DCA) and <doi:10.1186/s12859-019-3310-7> (for PLS-DA or OPLS-DA).
ncomp
default 3; dimensions shown in the results (except method "NMDS").
trans
default FALSE; whether species abundance will be square transformed; only available when method
is "PCA" or "DCA".
scale_species
default FALSE; whether species loading in PCA or DCA is scaled.
scale_species_ratio
default 0.8; the ratio to scale up the loading; multiply by the maximum distance between samples and origin.
Only available when scale_species = TURE
.
orthoI
default NA; number of orthogonal components (for OPLS-DA only). Default NA means the number of orthogonal components is automatically computed.
Please also see orthoI
parameter in opls
function of ropls package.
ordination
deprecated. Please use method
argument instead.
...
parameters passed to vegan::rda
function when method = "PCA"
,
or vegan::decorana
function when method = "DCA"
,
or ape::pcoa
function when method = "PCoA"
,
or vegan::metaMDS
function when method = "NMDS"
,
or ropls::opls
function when method = "PLS-DA"
or method = "OPLS-DA"
.
res_ordination
stored in the object.
t1$cal_ordination(method = "PCoA")
plot_ordination()
Plot the ordination result.
trans_beta$plot_ordination( plot_type = "point", color_values = RColorBrewer::brewer.pal(8, "Dark2"), shape_values = c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14), plot_color = NULL, plot_shape = NULL, plot_group_order = NULL, add_sample_label = NULL, point_size = 3, point_alpha = 0.8, centroid_segment_alpha = 0.6, centroid_segment_size = 1, centroid_segment_linetype = 3, ellipse_chull_fill = TRUE, ellipse_chull_alpha = 0.1, ellipse_level = 0.9, ellipse_type = "t", NMDS_stress_pos = c(1, 1), NMDS_stress_text_prefix = "", loading_arrow = FALSE, loading_taxa_num = 10, loading_text_color = "black", loading_arrow_color = "grey30", loading_text_size = 3, loading_text_italic = FALSE )
plot_type
default "point"; one or more elements of "point", "ellipse", "chull" and "centroid".
add sample points
add confidence ellipse for points of each group
add convex hull for points of each group
add centroid line of each group
color_values
default RColorBrewer::brewer.pal
(8, "Dark2"); colors palette for different groups.
shape_values
default c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14); a vector for point shape types of groups, see ggplot2
tutorial.
plot_color
default NULL; a colname of sample_table
to assign colors to different groups in plot.
plot_shape
default NULL; a colname of sample_table
to assign shapes to different groups in plot.
plot_group_order
default NULL; a vector used to order the groups in the legend of plot.
add_sample_label
default NULL; a column name in sample_table
; If provided, show the point name in plot.
point_size
default 3; point size when "point" is in plot_type
parameter.
point_alpha
default .8; point transparency in plot when "point" is in plot_type
parameter.
centroid_segment_alpha
default 0.6; segment transparency in plot when "centroid" is in plot_type
parameter.
centroid_segment_size
default 1; segment size in plot when "centroid" is in plot_type
parameter.
centroid_segment_linetype
default 3; the line type related with centroid in plot when "centroid" is in plot_type
parameter.
ellipse_chull_fill
default TRUE; whether fill colors to the area of ellipse or chull.
ellipse_chull_alpha
default 0.1; color transparency in the ellipse or convex hull depending on whether "ellipse" or "centroid" is in plot_type
parameter.
ellipse_level
default .9; confidence level of ellipse when "ellipse" is in plot_type
parameter.
ellipse_type
default "t"; ellipse type when "ellipse" is in plot_type
parameter; see type in stat_ellipse
.
NMDS_stress_pos
default c(1, 1); a numerical vector with two values used to represent the insertion position of the stress text.
The first one denotes the x-axis, while the second one corresponds to the y-axis.
The assigned position is determined by multiplying the respective value with the maximum point on the corresponding coordinate axis.
Thus, the x-axis position is equal to max(points of x axis) * NMDS_stress_pos[1]
,
and the y-axis position is equal to max(points of y axis) * NMDS_stress_pos[2]
. Negative values can also be utilized for the negative part of the axis.
NMDS_stress_pos = NULL
denotes no stress text to show.
NMDS_stress_text_prefix
default ""; If NMDS_stress_pos is not NULL, this parameter can be used to add text in front of the stress value.
loading_arrow
default FALSE; whether show the loading using arrow.
loading_taxa_num
default 10; the number of taxa used for the loading. Only available when loading_arrow = TRUE
.
loading_text_color
default "black"; the color of taxa text. Only available when loading_arrow = TRUE
.
loading_arrow_color
default "grey30"; the color of taxa arrow. Only available when loading_arrow = TRUE
.
loading_text_size
default 3; the size of taxa text. Only available when loading_arrow = TRUE
.
loading_text_italic
default FALSE; whether using italic for the taxa text. Only available when loading_arrow = TRUE
.
ggplot
.
t1$plot_ordination(plot_type = "point") t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = "point") t1$plot_ordination(plot_color = "Group", plot_type = c("point", "ellipse")) t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"), centroid_segment_linetype = 1)
cal_manova()
Calculate perMANOVA (Permutational Multivariate Analysis of Variance) based on the adonis2
function of vegan package <doi:10.1111/j.1442-9993.2001.01070.pp.x>.
trans_beta$cal_manova( manova_all = TRUE, manova_set = NULL, group = NULL, by_group = NULL, p_adjust_method = "fdr", by = "terms", permutations = 999, ... )
manova_all
default TRUE; TRUE represents test for all the groups, i.e. the overall test; FALSE represents test for all the paired groups.
manova_set
default NULL; other specified group set for manova, such as "Group + Type"
and "Group*Type"
.
Please also see the formula
parameter (only right-hand side) in adonis2
function of vegan package.
The parameter manova_set has higher priority than manova_all parameter. If manova_set is provided; manova_all is disabled.
group
default NULL; a column name of sample_table
used for manova. If NULL, search group
variable stored in the object.
Available when manova_set
is not provided.
by_group
default NULL; one column name in sample_table
; used to perform paired comparisions within each group.
Only available when manova_all = FALSE
and manova_set
is not provided.
p_adjust_method
default "fdr"; p.adjust method; available when manova_all = FALSE
;
see method
parameter of p.adjust
function for available options.
by
default "terms"; same with the by
parameter in adonis2
function of vegan package.
permutations
default 999; same with the permutations
parameter in adonis2
function of vegan package.
...
parameters passed to adonis2
function of vegan
package.
res_manova
stored in object with data.frame
class.
t1$cal_manova(manova_all = TRUE)
cal_anosim()
Analysis of similarities (ANOSIM) based on the anosim
function of vegan package.
trans_beta$cal_anosim( paired = FALSE, group = NULL, by_group = NULL, p_adjust_method = "fdr", permutations = 999, ... )
paired
default FALSE; whether perform paired test between any two combined groups from all the input groups.
group
default NULL; a column name of sample_table
. If NULL, search group
variable stored in the object.
by_group
default NULL; one column name in sample_table
; used to perform paired comparisions within each group.
Only available when paired = TRUE
.
p_adjust_method
default "fdr"; p.adjust method; available when paired = TRUE
; see method parameter of p.adjust
function for available options.
permutations
default 999; same with the permutations
parameter in anosim
function of vegan package.
...
parameters passed to anosim
function of vegan
package.
res_anosim
stored in object with data.frame
class.
t1$cal_anosim()
cal_betadisper()
Multivariate homogeneity test of groups dispersions (PERMDISP) based on betadisper
function in vegan package.
trans_beta$cal_betadisper(...)
...
parameters passed to betadisper
function.
res_betadisper
stored in object.
t1$cal_betadisper()
cal_group_distance()
Convert symmetric distance matrix to distance table of paired samples that are within groups or between groups.
trans_beta$cal_group_distance( within_group = TRUE, by_group = NULL, ordered_group = NULL, sep = " vs " )
within_group
default TRUE; whether obtain distance table of paired samples within groups; if FALSE, obtain distances of paired samples between any two groups.
by_group
default NULL; one colname name of sample_table
in microtable
object.
If provided, transform distances by the provided by_group
parameter. This is especially useful for ordering and filtering values further.
When within_group = TRUE
, the result of by_group parameter is the format of paired groups.
When within_group = FALSE
, the result of by_group parameter is the format same with the group information in sample_table
.
ordered_group
default NULL; a vector representing the ordered elements of group
parameter; only useful when within_group = FALSE.
sep
default TRUE; a character string to separate the group names after merging them into a new name.
res_group_distance
stored in object.
\donttest{ t1$cal_group_distance(within_group = TRUE) }
cal_group_distance_diff()
Differential test of converted distances across groups.
trans_beta$cal_group_distance_diff( group = NULL, by_group = NULL, by_ID = NULL, ... )
group
default NULL; a column name of object$res_group_distance
used for the statistics; If NULL, use the group
inside the object.
by_group
default NULL; a column of object$res_group_distance
used to perform the differential test
among elements in group
parameter for each element in by_group
parameter. So by_group
has a larger scale than group
parameter.
This by_group
is very different from the by_group
parameter in the cal_group_distance
function.
by_ID
default NULL; a column of object$res_group_distance
used to perform paired t test or paired wilcox test for the paired data,
such as the data of plant compartments for different plant species (ID).
So by_ID
should be the smallest unit of sample collection without any repetition in it.
...
parameters passed to cal_diff
function of trans_alpha
class.
res_group_distance_diff
stored in object.
\donttest{ t1$cal_group_distance_diff() }
plot_group_distance()
Plot the distances of paired groups within or between groups.
trans_beta$plot_group_distance(plot_group_order = NULL, ...)
plot_group_order
default NULL; a vector used to order the groups in the plot.
...
parameters (except measure) passed to plot_alpha
function of trans_alpha
class.
ggplot
.
\donttest{ t1$plot_group_distance() }
plot_clustering()
Plot clustering result based on the ggdendro
package.
trans_beta$plot_clustering( color_values = RColorBrewer::brewer.pal(8, "Dark2"), measure = NULL, group = NULL, replace_name = NULL )
color_values
default RColorBrewer::brewer.pal(8, "Dark2"); color palette for the text.
measure
default NULL; beta diversity index; If NULL, using the measure when creating object
group
default NULL; if provided, use this group to assign color.
replace_name
default NULL; if provided, use this as label.
ggplot
.
t1$plot_clustering(group = "Group", replace_name = c("Saline", "Type"))
clone()
The objects of this class are cloneable with this method.
trans_beta$clone(deep = FALSE)
deep
Whether to make a deep clone.
## ------------------------------------------------ ## Method `trans_beta$new` ## ------------------------------------------------ data(dataset) t1 <- trans_beta$new(dataset = dataset, measure = "bray", group = "Group") ## ------------------------------------------------ ## Method `trans_beta$cal_ordination` ## ------------------------------------------------ t1$cal_ordination(method = "PCoA") ## ------------------------------------------------ ## Method `trans_beta$plot_ordination` ## ------------------------------------------------ t1$plot_ordination(plot_type = "point") t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = "point") t1$plot_ordination(plot_color = "Group", plot_type = c("point", "ellipse")) t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"), centroid_segment_linetype = 1) ## ------------------------------------------------ ## Method `trans_beta$cal_manova` ## ------------------------------------------------ t1$cal_manova(manova_all = TRUE) ## ------------------------------------------------ ## Method `trans_beta$cal_anosim` ## ------------------------------------------------ t1$cal_anosim() ## ------------------------------------------------ ## Method `trans_beta$cal_betadisper` ## ------------------------------------------------ t1$cal_betadisper() ## ------------------------------------------------ ## Method `trans_beta$cal_group_distance` ## ------------------------------------------------ t1$cal_group_distance(within_group = TRUE) ## ------------------------------------------------ ## Method `trans_beta$cal_group_distance_diff` ## ------------------------------------------------ t1$cal_group_distance_diff() ## ------------------------------------------------ ## Method `trans_beta$plot_group_distance` ## ------------------------------------------------ t1$plot_group_distance() ## ------------------------------------------------ ## Method `trans_beta$plot_clustering` ## ------------------------------------------------ t1$plot_clustering(group = "Group", replace_name = c("Saline", "Type"))
## ------------------------------------------------ ## Method `trans_beta$new` ## ------------------------------------------------ data(dataset) t1 <- trans_beta$new(dataset = dataset, measure = "bray", group = "Group") ## ------------------------------------------------ ## Method `trans_beta$cal_ordination` ## ------------------------------------------------ t1$cal_ordination(method = "PCoA") ## ------------------------------------------------ ## Method `trans_beta$plot_ordination` ## ------------------------------------------------ t1$plot_ordination(plot_type = "point") t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = "point") t1$plot_ordination(plot_color = "Group", plot_type = c("point", "ellipse")) t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"), centroid_segment_linetype = 1) ## ------------------------------------------------ ## Method `trans_beta$cal_manova` ## ------------------------------------------------ t1$cal_manova(manova_all = TRUE) ## ------------------------------------------------ ## Method `trans_beta$cal_anosim` ## ------------------------------------------------ t1$cal_anosim() ## ------------------------------------------------ ## Method `trans_beta$cal_betadisper` ## ------------------------------------------------ t1$cal_betadisper() ## ------------------------------------------------ ## Method `trans_beta$cal_group_distance` ## ------------------------------------------------ t1$cal_group_distance(within_group = TRUE) ## ------------------------------------------------ ## Method `trans_beta$cal_group_distance_diff` ## ------------------------------------------------ t1$cal_group_distance_diff() ## ------------------------------------------------ ## Method `trans_beta$plot_group_distance` ## ------------------------------------------------ t1$plot_group_distance() ## ------------------------------------------------ ## Method `trans_beta$plot_clustering` ## ------------------------------------------------ t1$plot_clustering(group = "Group", replace_name = c("Saline", "Type"))
trans_classifier
object for machine-learning-based model prediction.This class is a wrapper for methods of machine-learning-based classification or regression models, including data pre-processing, feature selection, data split, model training, prediction, confusionMatrix and ROC (Receiver Operator Characteristic) or PR (Precision-Recall) curve.
Author(s): Felipe Mansoldo and Chi Liu
new()
Create a trans_classifier object.
trans_classifier$new( dataset, x.predictors = "Genus", y.response = NULL, n.cores = 1 )
dataset
an object of microtable
class.
x.predictors
default "Genus"; character string or data.frame; a character string represents selecting the corresponding data from microtable$taxa_abund
;
data.frame denotes other customized input. See the following available options:
use Genus level table in microtable$taxa_abund
, or other specific taxonomic rank, e.g., 'Phylum'.
If an input level (e.g., ASV) is not found in the names of taxa_abund list, the function will use otu_table
to calculate relative abundance of features.
use all the levels stored in microtable$taxa_abund
.
must be a data.frame object. It should have the same format with the tables in microtable$taxa_abund, i.e. rows are features; columns are samples with same names in sample_table.
y.response
default NULL; the response variable in sample_table
of input microtable
object.
n.cores
default 1; the CPU thread used.
data_feature
and data_response
stored in the object.
\donttest{ data(dataset) t1 <- trans_classifier$new( dataset = dataset, x.predictors = "Genus", y.response = "Group") }
cal_preProcess()
Pre-process (centering, scaling etc.) of the feature data based on the caret::preProcess function. See https://topepo.github.io/caret/pre-processing.html for more details.
trans_classifier$cal_preProcess(...)
...
parameters pass to preProcess
function of caret package.
preprocessed data_feature
in the object.
\dontrun{ # "nzv" removes near zero variance predictors t1$cal_preProcess(method = c("center", "scale", "nzv")) }
cal_feature_sel()
Perform feature selection. See https://topepo.github.io/caret/feature-selection-overview.html for more details.
trans_classifier$cal_feature_sel( boruta.maxRuns = 300, boruta.pValue = 0.01, boruta.repetitions = 4, ... )
boruta.maxRuns
default 300; maximal number of importance source runs; passed to the maxRuns
parameter in Boruta
function of Boruta package.
boruta.pValue
default 0.01; p value passed to the pValue parameter in Boruta
function of Boruta package.
boruta.repetitions
default 4; repetition runs for the feature selection.
...
parameters pass to Boruta
function of Boruta package.
optimized data_feature
in the object.
\dontrun{ t1$cal_feature_sel(boruta.maxRuns = 300, boruta.pValue = 0.01) }
cal_split()
Split data for training and testing.
trans_classifier$cal_split(prop.train = 3/4)
prop.train
default 3/4; the ratio of the data used for the training.
data_train
and data_test
in the object.
\dontrun{ t1$cal_split(prop.train = 3/4) }
set_trainControl()
Control parameters for the following training. Please see trainControl
function of caret package for details.
trans_classifier$set_trainControl( method = "repeatedcv", classProbs = TRUE, savePredictions = TRUE, ... )
method
default 'repeatedcv'; 'repeatedcv': Repeated k-Fold cross validation;
see method parameter in trainControl
function of caret
package for available options.
classProbs
default TRUE; should class probabilities be computed for classification models?;
see classProbs parameter in caret::trainControl
function.
savePredictions
default TRUE; see savePredictions
parameter in caret::trainControl
function.
...
parameters pass to trainControl
function of caret package.
trainControl
in the object.
\dontrun{ t1$set_trainControl(method = 'repeatedcv') }
cal_train()
Run the model training. Please see https://topepo.github.io/caret/available-models.html for available models.
trans_classifier$cal_train(method = "rf", max.mtry = 2, ntree = 500, ...)
method
default "rf"; "rf": random forest; see method in train
function of caret package for other options.
For method = "rf", the tuneGrid
is set: expand.grid(mtry = seq(from = 1, to = max.mtry))
max.mtry
default 2; for method = "rf"; maximum mtry used in the tuneGrid
to do hyperparameter tuning to optimize the model.
ntree
default 500; for method = "rf"; Number of trees to grow.
The default 500 is same with the ntree
parameter in randomForest
function in randomForest package.
When it is a vector with more than one element, the function will try to optimize the model to select a best one, such as c(100, 500, 1000)
.
...
parameters pass to caret::train
function.
res_train
in the object.
\dontrun{ # random forest t1$cal_train(method = "rf") # Support Vector Machines with Radial Basis Function Kernel t1$cal_train(method = "svmRadial", tuneLength = 15) }
cal_feature_imp()
Get feature importance from the training model.
trans_classifier$cal_feature_imp(rf_feature_sig = FALSE, ...)
rf_feature_sig
default FALSE; whether calculate feature significance in 'rf' model using rfPermute
package;
only available for method = "rf"
in cal_train
function.
...
parameters pass to varImp
function of caret package.
If rf_feature_sig
is TURE and train_method
is "rf", the parameters will be passed to rfPermute
function of rfPermute package.
res_feature_imp
in the object. One row for each predictor variable. The column(s) are different importance measures.
For the method 'rf', it is MeanDecreaseGini (classification) or IncNodePurity (regression) when rf_feature_sig = FALSE
.
\dontrun{ t1$cal_feature_imp() }
plot_feature_imp()
Bar plot for feature importance.
trans_classifier$plot_feature_imp( rf_sig_show = NULL, show_sig_group = FALSE, ... )
rf_sig_show
default NULL; "MeanDecreaseAccuracy" (Default) or "MeanDecreaseGini" for random forest classification;
"%IncMSE" (Default) or "IncNodePurity" for random forest regression;
Only available when rf_feature_sig = TRUE
in function cal_feature_imp
,
which generate "MeanDecreaseGini" (and "MeanDecreaseAccuracy") or "%IncMSE" (and "IncNodePurity") in the column names of res_feature_imp
;
Function can also generate "Significance" according to the p value.
show_sig_group
default FALSE; whether show the features with different significant groups; Only available when "Significance" is found in the data.
...
parameters pass to plot_diff_bar
function of trans_diff
package.
ggplot2
object.
\dontrun{ t1$plot_feature_imp(use_number = 1:20, coord_flip = FALSE) }
cal_predict()
Run the prediction.
trans_classifier$cal_predict(positive_class = NULL)
positive_class
default NULL; see positive parameter in confusionMatrix
function of caret package;
If positive_class is NULL, use the first group in data as the positive class automatically.
res_predict
, res_confusion_fit
and res_confusion_stats
stored in the object.
The res_predict
is the predicted result for data_test
.
Several evaluation metrics in res_confusion_fit
are defined as follows:
where TP is true positive; TN is ture negative; FP is false positive; and FN is false negative; FPR is False Positive Rate; TPR is True Positive Rate; TNR is True Negative Rate; Pe is the hypothetical probability of chance agreement on the classes for reference and prediction in the confusion matrix. Accuracy represents the ratio of correct predictions. Precision identifies how the model accurately predicted the positive classes. Recall (sensitivity) measures the ratio of actual positives that are correctly identified by the model. F1-score is the weighted average score of recall and precision. The value at 1 is the best performance and at 0 is the worst. Prevalence represents how often positive events occurred. Kappa identifies how well the model is predicting.
\dontrun{ t1$cal_predict() }
plot_confusionMatrix()
Plot the cross-tabulation of observed and predicted classes with associated statistics based on the results of function cal_predict
.
trans_classifier$plot_confusionMatrix( plot_confusion = TRUE, plot_statistics = TRUE )
plot_confusion
default TRUE; whether plot the confusion matrix.
plot_statistics
default TRUE; whether plot the statistics.
ggplot
object.
\dontrun{ t1$plot_confusionMatrix() }
cal_ROC()
Get ROC (Receiver Operator Characteristic) curve data and the performance data.
trans_classifier$cal_ROC(input = "pred")
input
default "pred"; 'pred' or 'train'; 'pred' represents using prediction results; 'train' represents using training results.
a list res_ROC
stored in the object. It has two tables: res_roc
and res_pr
. AUC: Area Under the ROC Curve.
For the definition of metrics, please refer to the return part of function cal_predict
.
\dontrun{ t1$cal_ROC() }
plot_ROC()
Plot ROC curve.
trans_classifier$plot_ROC( plot_type = c("ROC", "PR")[1], plot_group = "all", color_values = RColorBrewer::brewer.pal(8, "Dark2"), add_AUC = TRUE, plot_method = FALSE, ... )
plot_type
default c("ROC", "PR")[1]; 'ROC' represents ROC (Receiver Operator Characteristic) curve; 'PR' represents PR (Precision-Recall) curve.
plot_group
default "all"; 'all' represents all the classes in the model; 'add' represents all adding micro-average and macro-average results, see https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html; other options should be one or more class names, same with the names in Group column of res_ROC$res_roc from cal_ROC function.
color_values
default RColorBrewer::brewer.pal(8, "Dark2"); colors used in the plot.
add_AUC
default TRUE; whether add AUC in the legend.
plot_method
default FALSE; If TRUE, show the method in the legend though only one method is found.
...
parameters pass to geom_path
function of ggplot2 package.
ggplot2
object.
\dontrun{ t1$plot_ROC(size = 1, alpha = 0.7) }
cal_caretList()
Use caretList
function of caretEnsemble package to run multiple models. For the available models, please run names(getModelInfo())
.
trans_classifier$cal_caretList(...)
...
parameters pass to caretList
function of caretEnsemble
package.
res_caretList_models
in the object.
\dontrun{ t1$cal_caretList(methodList = c('rf', 'svmRadial')) }
cal_caretList_resamples()
Use resamples
function of caret package to collect the metric values based on the res_caretList_models
data.
trans_classifier$cal_caretList_resamples(...)
...
parameters pass to resamples
function of caret
package.
res_caretList_resamples
list and res_caretList_resamples_reshaped
table in the object.
\dontrun{ t1$cal_caretList_resamples() }
plot_caretList_resamples()
Visualize the metric values based on the res_caretList_resamples_reshaped
data.
trans_classifier$plot_caretList_resamples( color_values = RColorBrewer::brewer.pal(8, "Dark2"), ... )
color_values
default RColorBrewer::brewer.pal
(8, "Dark2"); colors palette for the box.
...
parameters pass to geom_boxplot
function of ggplot2
package.
ggplot object.
\dontrun{ t1$plot_caretList_resamples() }
clone()
The objects of this class are cloneable with this method.
trans_classifier$clone(deep = FALSE)
deep
Whether to make a deep clone.
## ------------------------------------------------ ## Method `trans_classifier$new` ## ------------------------------------------------ data(dataset) t1 <- trans_classifier$new( dataset = dataset, x.predictors = "Genus", y.response = "Group") ## ------------------------------------------------ ## Method `trans_classifier$cal_preProcess` ## ------------------------------------------------ ## Not run: # "nzv" removes near zero variance predictors t1$cal_preProcess(method = c("center", "scale", "nzv")) ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$cal_feature_sel` ## ------------------------------------------------ ## Not run: t1$cal_feature_sel(boruta.maxRuns = 300, boruta.pValue = 0.01) ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$cal_split` ## ------------------------------------------------ ## Not run: t1$cal_split(prop.train = 3/4) ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$set_trainControl` ## ------------------------------------------------ ## Not run: t1$set_trainControl(method = 'repeatedcv') ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$cal_train` ## ------------------------------------------------ ## Not run: # random forest t1$cal_train(method = "rf") # Support Vector Machines with Radial Basis Function Kernel t1$cal_train(method = "svmRadial", tuneLength = 15) ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$cal_feature_imp` ## ------------------------------------------------ ## Not run: t1$cal_feature_imp() ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$plot_feature_imp` ## ------------------------------------------------ ## Not run: t1$plot_feature_imp(use_number = 1:20, coord_flip = FALSE) ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$cal_predict` ## ------------------------------------------------ ## Not run: t1$cal_predict() ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$plot_confusionMatrix` ## ------------------------------------------------ ## Not run: t1$plot_confusionMatrix() ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$cal_ROC` ## ------------------------------------------------ ## Not run: t1$cal_ROC() ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$plot_ROC` ## ------------------------------------------------ ## Not run: t1$plot_ROC(size = 1, alpha = 0.7) ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$cal_caretList` ## ------------------------------------------------ ## Not run: t1$cal_caretList(methodList = c('rf', 'svmRadial')) ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$cal_caretList_resamples` ## ------------------------------------------------ ## Not run: t1$cal_caretList_resamples() ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$plot_caretList_resamples` ## ------------------------------------------------ ## Not run: t1$plot_caretList_resamples() ## End(Not run)
## ------------------------------------------------ ## Method `trans_classifier$new` ## ------------------------------------------------ data(dataset) t1 <- trans_classifier$new( dataset = dataset, x.predictors = "Genus", y.response = "Group") ## ------------------------------------------------ ## Method `trans_classifier$cal_preProcess` ## ------------------------------------------------ ## Not run: # "nzv" removes near zero variance predictors t1$cal_preProcess(method = c("center", "scale", "nzv")) ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$cal_feature_sel` ## ------------------------------------------------ ## Not run: t1$cal_feature_sel(boruta.maxRuns = 300, boruta.pValue = 0.01) ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$cal_split` ## ------------------------------------------------ ## Not run: t1$cal_split(prop.train = 3/4) ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$set_trainControl` ## ------------------------------------------------ ## Not run: t1$set_trainControl(method = 'repeatedcv') ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$cal_train` ## ------------------------------------------------ ## Not run: # random forest t1$cal_train(method = "rf") # Support Vector Machines with Radial Basis Function Kernel t1$cal_train(method = "svmRadial", tuneLength = 15) ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$cal_feature_imp` ## ------------------------------------------------ ## Not run: t1$cal_feature_imp() ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$plot_feature_imp` ## ------------------------------------------------ ## Not run: t1$plot_feature_imp(use_number = 1:20, coord_flip = FALSE) ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$cal_predict` ## ------------------------------------------------ ## Not run: t1$cal_predict() ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$plot_confusionMatrix` ## ------------------------------------------------ ## Not run: t1$plot_confusionMatrix() ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$cal_ROC` ## ------------------------------------------------ ## Not run: t1$cal_ROC() ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$plot_ROC` ## ------------------------------------------------ ## Not run: t1$plot_ROC(size = 1, alpha = 0.7) ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$cal_caretList` ## ------------------------------------------------ ## Not run: t1$cal_caretList(methodList = c('rf', 'svmRadial')) ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$cal_caretList_resamples` ## ------------------------------------------------ ## Not run: t1$cal_caretList_resamples() ## End(Not run) ## ------------------------------------------------ ## Method `trans_classifier$plot_caretList_resamples` ## ------------------------------------------------ ## Not run: t1$plot_caretList_resamples() ## End(Not run)
trans_diff
object for the differential analysis on the taxonomic abundanceThis class is a wrapper for a series of differential abundance test and indicator analysis methods, including
LEfSe based on the Segata et al. (2011) <doi:10.1186/gb-2011-12-6-r60>,
random forest <doi:10.1016/j.geoderma.2018.09.035>, metastat based on White et al. (2009) <doi:10.1371/journal.pcbi.1000352>,
non-parametric Kruskal-Wallis Rank Sum Test,
Dunn's Kruskal-Wallis Multiple Comparisons based on the FSA
package, Wilcoxon Rank Sum and Signed Rank Tests, t-test, anova,
Scheirer Ray Hare test,
R package metagenomeSeq
Paulson et al. (2013) <doi:10.1038/nmeth.2658>,
R package ANCOMBC
<doi:10.1038/s41467-020-17041-7>, R package ALDEx2
<doi:10.1371/journal.pone.0067019; 10.1186/2049-2618-2-15>,
R package MicrobiomeStat
<doi:10.1186/s13059-022-02655-5>, beta regression <doi:10.18637/jss.v034.i02>, R package maaslin2
,
linear mixed-effects model and generalized linear mixed model.
new()
trans_diff$new( dataset = NULL, method = c("lefse", "rf", "metastat", "metagenomeSeq", "KW", "KW_dunn", "wilcox", "t.test", "anova", "scheirerRayHare", "lm", "ancombc2", "ALDEx2_t", "ALDEx2_kw", "DESeq2", "edgeR", "linda", "maaslin2", "betareg", "lme", "glmm", "glmm_beta")[1], group = NULL, taxa_level = "all", filter_thres = 0, alpha = 0.05, p_adjust_method = "fdr", transformation = NULL, remove_unknown = TRUE, lefse_subgroup = NULL, lefse_min_subsam = 10, lefse_sub_strict = FALSE, lefse_sub_alpha = NULL, lefse_norm = 1e+06, nresam = 0.6667, boots = 30, rf_imp_type = 2, group_choose_paired = NULL, metagenomeSeq_count = 1, ALDEx2_sig = c("wi.eBH", "kw.eBH"), by_group = NULL, by_ID = NULL, beta_pseudo = .Machine$double.eps, ... )
dataset
default NULL; microtable
object.
method
default "lefse". Some methods (e.g., "lefse", "KW", "wilcox", "anova", "lm", "betareg", "glmm" and "glmm_beta")
invoke the taxa_abund
list (generally relative abundance data) of input microtable object for the analysis.
Some (e.g., "metastat", "metagenomeSeq", "ALDEx2_t", "DESeq2", "edgeR", "ancombc2" and "linda") use the otu_table
of input microtable object for the analysis.
Available options include:
LEfSe method based on Segata et al. (2011) <doi:10.1186/gb-2011-12-6-r60>
random forest and non-parametric test method based on An et al. (2019) <doi:10.1016/j.geoderma.2018.09.035>
Metastat method for all paired groups based on White et al. (2009) <doi:10.1371/journal.pcbi.1000352>
zero-inflated log-normal model-based differential test method from metagenomeSeq
package.
KW: Kruskal-Wallis Rank Sum Test for all groups (>= 2)
Dunn's Kruskal-Wallis Multiple Comparisons when group number > 2; see dunnTest function in FSA
package
Wilcoxon Rank Sum and Signed Rank Tests for all paired groups
Student's t-Test for all paired groups
ANOVA for one-way or multi-factor analysis; see cal_diff
function of trans_alpha
class
Scheirer Ray Hare test for nonparametric test used for a two-way factorial experiment;
see scheirerRayHare
function of rcompanion
package
Linear Model based on the lm
function
runs Welch's t and Wilcoxon tests with ALDEx2
package; see also the test parameter in ALDEx2::aldex
function;
ALDEx2 uses the centred log-ratio (clr) transformation and estimates per-feature technical variation within each sample using Monte-Carlo instances
drawn from the Dirichlet distribution; Reference: <doi:10.1371/journal.pone.0067019> and <doi:10.1186/2049-2618-2-15>;
require ALDEx2
package to be installed
(https://bioconductor.org/packages/release/bioc/html/ALDEx2.html)
runs Kruskal-Wallace and generalized linear model (glm) test with ALDEx2
package;
see also the test
parameter in ALDEx2::aldex
function.
Differential expression analysis based on the Negative Binomial (a.k.a. Gamma-Poisson) distribution based on the DESeq2
package.
The exactTest
method of edgeR
package is implemented.
Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC)
based on the ancombc2
function from ANCOMBC
package.
If the fix_formula
parameter is not provided, the function can automatically assign it by using group parameter.
For this method, the group
parameter is directly passed to the group parameter of ancombc2
function.
Reference: <doi:10.1038/s41467-020-17041-7><10.1038/s41592-023-02092-7>; Require ANCOMBC
package to be installed
(https://bioconductor.org/packages/release/bioc/html/ANCOMBC.html)
Linear Model for Differential Abundance Analysis of High-dimensional Compositional Data
based on the linda
function of MicrobiomeStat
package.
For linda method, please provide either the group parameter or the formula parameter.
When the formula parameter is provided, it should start with '~' as it is directly used by the linda function.
If the group parameter is used, the prefix '~' is not necessary as the function can automatically add it.
The parameter feature.dat.type = 'count'
has been fixed. Other parameters can be passed to the linda
function.
Reference: <doi:10.1186/s13059-022-02655-5>
finding associations between metadata and potentially high-dimensional microbial multi-omics data based on the Maaslin2 package.
Using this option can invoke the trans_env$cal_cor
function with cor_method = "maaslin2"
.
Beta Regression based on the betareg
package.
Please see the beta_pseudo
parameter for the use of pseudo value when there is 0 or 1 in the data
Linear Mixed Effect Model based on the lmerTest
package.
In the return table, the significance of fixed factors are tested by function anova
.
The significance of 'Estimate' in each term of fixed factors comes from the model.
Generalized linear mixed model (GLMM) based on the glmmTMB
package.
The formula
and family
parameters are needed.
Please refer to glmmTMB package to select the family function, e.g. family = glmmTMB::lognormal(link = "log")
.
The usage of formula is similar with that in 'lme' method.
For more available parameters, please see glmmTMB::glmmTMB
function and use parameter passing.
In the result, Conditional R2 and Marginal R2 represent the variance explained by both fixed and random effects and the variance explained by
fixed effects, respectively. For more details on R2 calculation, please refer to the article <doi: 10.1098/rsif.2017.0213>.
The significance of fixed factors are tested by Chi-square test from function car::Anova
.
The significance of 'Estimate' in each term of fixed factors comes from the model.
Generalized linear mixed model with a family function of beta distribution,
developed for the relative abundance (ranging from 0 to 1) of taxa specifically.
This is an extension of the GLMM model in 'glmm'
option.
The only difference is in glmm_beta
the family function is fixed with the beta distribution function,
i.e. family = glmmTMB::beta_family(link = "logit")
.
Please see the beta_pseudo
parameter for the use of pseudo value when there is 0 or 1 in the data
group
default NULL; sample group used for the comparision; a colname of input microtable$sample_table
;
It is necessary when method is not "anova" or method is "anova" but formula is not provided.
Once group is provided, the return res_abund will have mean and sd values for group.
taxa_level
default "all"; 'all' represents using abundance data of all taxonomic ranks;
For testing at a specific rank, provide taxonomic rank name, such as "Genus".
If the provided taxonomic name is neither 'all' nor a colname in tax_table of input dataset (e.g., "ASV"),
the function will use the features in input microtable$otu_table
automatically.
Note that a specific level (e.g., "ASV") should be provided for method
:
"metastat", "metagenomeSeq", "ALDEx2_t", "DESeq2", "edgeR", "ancombc2", "linda", "maaslin2".
filter_thres
default 0; the abundance threshold, such as 0.0005 when the input is relative abundance; only available when method != "metastat". The features with abundances lower than filter_thres will be filtered.
alpha
default 0.05; significance threshold to select taxa when method is "lefse" or "rf";
or used to generate significance letters when method is 'anova' or 'KW_dunn' like the alpha parameter in cal_diff
of trans_alpha
class.
p_adjust_method
default "fdr"; p.adjust method; see method parameter of p.adjust
function for other available options;
"none" means disable p value adjustment; So when p_adjust_method = "none"
, P.adj is same with P.unadj.
transformation
default NULL; feature abundance transformation method in the class trans_norm
,
such as 'AST' for the arc sine square root transformation.
Only available when method
is one of "KW", "KW_dunn", "wilcox", "t.test", "anova", "scheirerRayHare", "betareg" and "lme".
remove_unknown
default TRUE; whether remove unknown features that donot have clear classification information.
lefse_subgroup
default NULL; sample sub group used for sub-comparision in lefse; Segata et al. (2011) <doi:10.1186/gb-2011-12-6-r60>.
lefse_min_subsam
default 10; sample numbers required in the subgroup test.
lefse_sub_strict
default FALSE; whether remove the features strictly in the sub-checking. FALSE means only removing the features that have different orders of medians across sub-groups with those across groups and the statistics are also significant. TRUE means removing the features that are not significant in one (or more) sub-test or have different orders of medians across sub-groups with those across groups.
lefse_sub_alpha
default NULL; The significance threshold in the test for lefse sub-groups. NULL means it is same with alpha
.
lefse_norm
default 1000000; normalization value used in lefse to scale abundances for each level.
A lefse_norm
value < 0 (e.g., -1) means no normalization same with the LEfSe python version.
nresam
default 0.6667; sample number ratio used in each bootstrap for method = "lefse" or "rf".
boots
default 30; bootstrap test number for method = "lefse" or "rf".
rf_imp_type
default 2; the type of feature importance in random forest when method = "rf"
.
Same with type
parameter in importance
function of randomForest
package.
1=mean decrease in accuracy (MeanDecreaseAccuracy), 2=mean decrease in node impurity (MeanDecreaseGini).
group_choose_paired
default NULL; a vector used for selecting the required groups for paired testing instead of all paired combinations across groups; Available when method is "metastat", "metagenomeSeq", "ALDEx2_t" or "edgeR".
metagenomeSeq_count
default 1; Filter features to have at least 'counts' counts.; see the count parameter in MRcoefs function of metagenomeSeq
package.
ALDEx2_sig
default c("wi.eBH", "kw.eBH"); which column of the final result is used as the significance asterisk assignment; applied to method = "ALDEx2_t" or "ALDEx2_kw"; the first element is provided to "ALDEx2_t"; the second is provided to "ALDEx2_kw"; for "ALDEx2_t", the available choice is "wi.eBH" (Expected Benjamini-Hochberg corrected P value of Wilcoxon test) and "we.eBH" (Expected BH corrected P value of Welch's t test); for "ALDEx2_kw"; for "ALDEx2_t", the available choice is "kw.eBH" (Expected BH corrected P value of Kruskal-Wallace test) and "glm.eBH" (Expected BH corrected P value of glm test).
by_group
default NULL; a column of sample_table used to perform the differential test
among groups (group
parameter) for each group (by_group
parameter). So by_group
has a higher level than group
parameter.
Same with the by_group
parameter in trans_alpha
class.
Only available when method is one of c("KW", "KW_dunn", "wilcox", "t.test", "anova", "scheirerRayHare")
.
by_ID
default NULL; a column of sample_table used to perform paired t test or paired wilcox test for the paired data,
such as the data of plant compartments for different plant species (ID).
So by_ID
in sample_table should be the smallest unit of sample collection without any repetition in it.
Same with the by_ID
parameter in trans_alpha class.
beta_pseudo
default .Machine$double.eps; the pseudo value used when the parameter method
is 'betareg'
or 'glmm_beta'
.
As the beta distribution function limits 0 < response value < 1, a pseudo value will be added for the data that equal to 0.
The data that equal to 1 will be replaced by 1/(1 + beta_pseudo)
.
...
parameters passed to cal_diff
function of trans_alpha
class when method is one of
"KW", "KW_dunn", "wilcox", "t.test", "anova", "betareg", "lme", "glmm" or "glmm_beta";
passed to randomForest::randomForest
function when method = "rf";
passed to ANCOMBC::ancombc2
function when method is "ancombc2" (except tax_level, global and fix_formula parameters);
passed to ALDEx2::aldex
function when method = "ALDEx2_t" or "ALDEx2_kw";
passed to DESeq2::DESeq
function when method = "DESeq2";
passed to MicrobiomeStat::linda
function when method = "linda";
passed to trans_env$cal_cor
function when method = "maaslin2".
res_diff and res_abund.
res_abund includes mean abundance of each taxa (Mean), standard deviation (SD), standard error (SE) and sample number (N) in the group (Group).
res_diff is the detailed differential test result depending on the method choice, may containing:
"Comparison": The groups for the comparision, maybe all groups or paired groups. If this column is not found, all groups are used;
"Group": Which group has the maximum median or mean value across the test groups;
For non-parametric methods, median value; For t.test, mean value;
"Taxa": which taxa is used in this comparision;
"Method": Test method used in the analysis depending on the method input;
"LDA" or others: LDA: linear discriminant score in LEfSe;
MeanDecreaseAccuracy and MeanDecreaseGini: mean decreasing in accuracy or in node impurity (gini index) in random forest;
"P.unadj": original p value;
"P.adj": adjusted p value;
"Estimate" and "Std.Error": When method is "betareg", "lm", "lme" or "glmm",
"Estimate" and "Std.Error" represent fitted coefficient and its standard error, respectively;
Others: qvalue: qvalue in metastat analysis.
\donttest{ data(dataset) t1 <- trans_diff$new(dataset = dataset, method = "lefse", group = "Group") t1 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group") t1 <- trans_diff$new(dataset = dataset, method = "metastat", group = "Group", taxa_level = "Genus") t1 <- trans_diff$new(dataset = dataset, method = "wilcox", group = "Group") }
plot_diff_abund()
Plot the abundance of taxa.
The significance can be optionally added in the plot. The taxa displayed are based on the taxa in the 'res_diff' table, selected using parameters. If the user filters out the non-significant taxa from the 'res_diff' table, these taxa will also be filtered from the plot.
trans_diff$plot_diff_abund( use_number = 1:10, color_values = RColorBrewer::brewer.pal(8, "Dark2"), select_taxa = NULL, simplify_names = TRUE, keep_prefix = TRUE, group_order = NULL, order_x_mean = TRUE, coord_flip = TRUE, add_sig = TRUE, xtext_angle = 45, xtext_size = 13, ytitle_size = 17, ... )
use_number
default 1:10; numeric vector; the sequences of taxa (1:n) selected in the plot; If n is larger than the number of total significant taxa, automatically use the total number as n.
color_values
default RColorBrewer::brewer.pal
(8, "Dark2"); color pallete for groups.
select_taxa
default NULL; character vector to provide taxa names.
The taxa names should be same with the names shown in the plot, not the 'Taxa' column names in object$res_diff$Taxa
.
simplify_names
default TRUE; whether use the simplified taxonomic name.
keep_prefix
default TRUE; whether retain the taxonomic prefix.
group_order
default NULL; a vector to order groups, i.e. reorder the legend and colors in plot; If NULL, the function can first check whether the group column of sample_table is factor. If yes, use the levels in it. If provided, overlook the levels in the group of sample_table.
order_x_mean
default TRUE; whether order x axis by the means of groups from large to small.
coord_flip
default TRUE; whether flip cartesian coordinates so that horizontal becomes vertical, and vertical becomes horizontal.
add_sig
default TRUE; whether add the significance label to the plot.
xtext_angle
default 45; number (e.g. 45). Angle of text in x axis.
xtext_size
default 13; x axis text size. NULL means the default size in ggplot2. If coord_flip = TRUE
, it represents the text size of the y axis.
ytitle_size
default 17; y axis title size. If coord_flip = TRUE
, it represents the title size of the x axis (i.e. "Relative abundance").
...
parameters passed to plot_alpha
function of trans_alpha
class.
ggplot.
\donttest{ t1 <- trans_diff$new(dataset = dataset, method = "anova", group = "Group", taxa_level = "Genus") t1$plot_diff_abund(use_number = 1:10) t1$plot_diff_abund(use_number = 1:10, add_sig = TRUE) t1 <- trans_diff$new(dataset = dataset, method = "wilcox", group = "Group") t1$plot_diff_abund(use_number = 1:20) t1$plot_diff_abund(use_number = 1:20, add_sig = TRUE) t1 <- trans_diff$new(dataset = dataset, method = "lefse", group = "Group") t1$plot_diff_abund(use_number = 1:20) t1$plot_diff_abund(use_number = 1:20, add_sig = TRUE) }
plot_diff_bar()
Bar plot for indicator index, such as LDA score and P value.
trans_diff$plot_diff_bar( color_values = RColorBrewer::brewer.pal(8, "Dark2"), color_group_map = FALSE, use_number = 1:10, threshold = NULL, select_group = NULL, keep_full_name = FALSE, keep_prefix = TRUE, group_order = NULL, group_aggre = TRUE, group_two_sep = TRUE, coord_flip = TRUE, add_sig = FALSE, add_sig_increase = 0.1, add_sig_text_size = 5, xtext_angle = 45, xtext_size = 10, axis_text_y = 12, heatmap_cell = "P.unadj", heatmap_sig = "Significance", heatmap_x = "Factors", heatmap_y = "Taxa", heatmap_lab_fill = "P value", ... )
color_values
default RColorBrewer::brewer.pal
(8, "Dark2"); colors palette for different groups.
color_group_map
default FALSE; whether match the colors to groups in order to fix the color in each group when part of groups are not shown in the plot.
When color_group_map = TRUE
, the group_order inside the object will be used as full groups set to guide the color extraction.
use_number
default 1:10; numeric vector; the taxa numbers used in the plot, i.e. 1:n.
threshold
default NULL; threshold value of indicators for selecting taxa, such as 3 for LDA score of LEfSe.
select_group
default NULL; this is used to select the paired group when multiple comparisions are generated;
The input select_group must be one of object$res_diff$Comparison
.
keep_full_name
default FALSE; whether keep the taxonomic full lineage names.
keep_prefix
default TRUE; whether retain the taxonomic prefix, such as "g__".
group_order
default NULL; a vector to order the legend and colors in plot;
If NULL, the function can first determine whether the group column of microtable$sample_table
is factor. If yes, use the levels in it.
If provided, this parameter can overwrite the levels in the group of microtable$sample_table
.
group_aggre
default TRUE; whether aggregate the features for each group.
group_two_sep
default TRUE; whether display the features of two groups on opposite sides of the coordinate axes when there are only two groups in total.
coord_flip
default TRUE; whether flip cartesian coordinates so that horizontal becomes vertical, and vertical becomes horizontal.
add_sig
default FALSE; whether add significance label (asterisk) above the bar.
add_sig_increase
default 0.1; the axis position (Value + add_sig_increase * max(Value)
) from which to add the significance label;
only available when add_sig = TRUE
.
add_sig_text_size
default 5; the size of added significance label; only available when add_sig = TRUE
.
xtext_angle
default 45; number ranging from 0 to 90; used to make x axis text generate angle to reduce text overlap; only available when coord_flip = FALSE.
xtext_size
default 10; the text size of x axis.
axis_text_y
default 12; the size for the y axis text.
heatmap_cell
default "P.unadj"; the column of data for the cell of heatmap when formula with multiple factors is found in the method.
heatmap_sig
default "Significance"; the column of data for the significance label of heatmap.
heatmap_x
default "Factors"; the column of data for the x axis of heatmap.
heatmap_y
default "Taxa"; the column of data for the y axis of heatmap.
heatmap_lab_fill
default "P value"; legend title of heatmap.
...
parameters passing to geom_bar
for the bar plot or
plot_cor
function in trans_env
class for the heatmap of multiple factors when formula is found in the method.
ggplot.
\donttest{ t1$plot_diff_bar(use_number = 1:20) }
plot_diff_cladogram()
Plot the cladogram using taxa with significant difference.
trans_diff$plot_diff_cladogram( color = RColorBrewer::brewer.pal(8, "Dark2"), group_order = NULL, use_taxa_num = 200, filter_taxa = NULL, use_feature_num = NULL, clade_label_level = 4, select_show_labels = NULL, only_select_show = FALSE, sep = "|", branch_size = 0.2, alpha = 0.2, clade_label_size = 2, clade_label_size_add = 5, clade_label_size_log = exp(1), node_size_scale = 1, node_size_offset = 1, annotation_shape = 22, annotation_shape_size = 5 )
color
default RColorBrewer::brewer.pal
(8, "Dark2"); color palette used in the plot.
group_order
default NULL; a vector to order the legend in plot;
If NULL, the function can first check whether the group column of sample_table is factor. If yes, use the levels in it.
If provided, this parameter can overwrite the levels in the group of sample_table.
If the number of provided group_order is less than the number of groups in res_diff$Group
, the function will select the groups of group_order automatically.
use_taxa_num
default 200; integer; The taxa number used in the background tree plot; select the taxa according to the mean abundance .
filter_taxa
default NULL; The mean relative abundance used to filter the taxa with low abundance.
use_feature_num
default NULL; integer; The feature number used in the plot; select the features according to the metric (method = "lefse" or "rf") from high to low.
clade_label_level
default 4; the taxonomic level for marking the label with letters, root is the largest.
select_show_labels
default NULL; character vector; The features to show in the plot with full label names, not the letters.
only_select_show
default FALSE; whether only use the the select features in the parameter select_show_labels
.
sep
default "|"; the seperate character in the taxonomic information.
branch_size
default 0.2; numberic, size of branch.
alpha
default 0.2; shading of the color.
clade_label_size
default 2; basic size for the clade label; please also see clade_label_size_add
and clade_label_size_log
.
clade_label_size_add
default 5; added basic size for the clade label; see the formula in clade_label_size_log
parameter.
clade_label_size_log
default exp(1)
; the base of log
function for added size of the clade label; the size formula:
clade_label_size + log(clade_label_level + clade_label_size_add, base = clade_label_size_log)
;
so use clade_label_size_log
, clade_label_size_add
and clade_label_size
can totally control the label size for different taxonomic levels.
node_size_scale
default 1; scale for the node size.
node_size_offset
default 1; offset for the node size.
annotation_shape
default 22; shape used in the annotation legend.
annotation_shape_size
default 5; size used in the annotation legend.
ggplot.
\dontrun{ t1$plot_diff_cladogram(use_taxa_num = 100, use_feature_num = 30, select_show_labels = NULL) }
clone()
The objects of this class are cloneable with this method.
trans_diff$clone(deep = FALSE)
deep
Whether to make a deep clone.
## ------------------------------------------------ ## Method `trans_diff$new` ## ------------------------------------------------ data(dataset) t1 <- trans_diff$new(dataset = dataset, method = "lefse", group = "Group") t1 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group") t1 <- trans_diff$new(dataset = dataset, method = "metastat", group = "Group", taxa_level = "Genus") t1 <- trans_diff$new(dataset = dataset, method = "wilcox", group = "Group") ## ------------------------------------------------ ## Method `trans_diff$plot_diff_abund` ## ------------------------------------------------ t1 <- trans_diff$new(dataset = dataset, method = "anova", group = "Group", taxa_level = "Genus") t1$plot_diff_abund(use_number = 1:10) t1$plot_diff_abund(use_number = 1:10, add_sig = TRUE) t1 <- trans_diff$new(dataset = dataset, method = "wilcox", group = "Group") t1$plot_diff_abund(use_number = 1:20) t1$plot_diff_abund(use_number = 1:20, add_sig = TRUE) t1 <- trans_diff$new(dataset = dataset, method = "lefse", group = "Group") t1$plot_diff_abund(use_number = 1:20) t1$plot_diff_abund(use_number = 1:20, add_sig = TRUE) ## ------------------------------------------------ ## Method `trans_diff$plot_diff_bar` ## ------------------------------------------------ t1$plot_diff_bar(use_number = 1:20) ## ------------------------------------------------ ## Method `trans_diff$plot_diff_cladogram` ## ------------------------------------------------ ## Not run: t1$plot_diff_cladogram(use_taxa_num = 100, use_feature_num = 30, select_show_labels = NULL) ## End(Not run)
## ------------------------------------------------ ## Method `trans_diff$new` ## ------------------------------------------------ data(dataset) t1 <- trans_diff$new(dataset = dataset, method = "lefse", group = "Group") t1 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group") t1 <- trans_diff$new(dataset = dataset, method = "metastat", group = "Group", taxa_level = "Genus") t1 <- trans_diff$new(dataset = dataset, method = "wilcox", group = "Group") ## ------------------------------------------------ ## Method `trans_diff$plot_diff_abund` ## ------------------------------------------------ t1 <- trans_diff$new(dataset = dataset, method = "anova", group = "Group", taxa_level = "Genus") t1$plot_diff_abund(use_number = 1:10) t1$plot_diff_abund(use_number = 1:10, add_sig = TRUE) t1 <- trans_diff$new(dataset = dataset, method = "wilcox", group = "Group") t1$plot_diff_abund(use_number = 1:20) t1$plot_diff_abund(use_number = 1:20, add_sig = TRUE) t1 <- trans_diff$new(dataset = dataset, method = "lefse", group = "Group") t1$plot_diff_abund(use_number = 1:20) t1$plot_diff_abund(use_number = 1:20, add_sig = TRUE) ## ------------------------------------------------ ## Method `trans_diff$plot_diff_bar` ## ------------------------------------------------ t1$plot_diff_bar(use_number = 1:20) ## ------------------------------------------------ ## Method `trans_diff$plot_diff_cladogram` ## ------------------------------------------------ ## Not run: t1$plot_diff_cladogram(use_taxa_num = 100, use_feature_num = 30, select_show_labels = NULL) ## End(Not run)
trans_env
object to analyze the association between environmental factor and microbial community.This class is a wrapper for a series of operations associated with environmental measurements, including redundancy analysis, mantel test, correlation analysis and linear fitting.
new()
trans_env$new( dataset = NULL, env_cols = NULL, add_data = NULL, character2numeric = FALSE, standardize = FALSE, complete_na = FALSE )
dataset
the object of microtable
Class.
env_cols
default NULL; either numeric vector or character vector to select columns in microtable$sample_table
, i.e. dataset$sample_table.
This parameter should be used in the case that all the required environmental data is in sample_table
of your microtable
object.
Otherwise, please use add_data
parameter.
add_data
default NULL; data.frame
format; provide the environmental data in the format data.frame
; rownames should be sample names.
This parameter should be used when the microtable$sample_table
object does not have environmental data.
Under this circumstance, the env_cols
parameter can not be used because no data can be selected.
character2numeric
default FALSE; whether convert the characters or factors to numeric values.
standardize
default FALSE; whether scale environmental variables to zero mean and unit variance.
complete_na
default FALSE; Whether fill the NA (missing value) in the environmental data;
If TRUE, the function can run the interpolation with the mice
package.
data_env
stored in the object.
data(dataset) data(env_data_16S) t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11])
cal_diff()
Differential test of environmental variables across groups.
trans_env$cal_diff( group = NULL, by_group = NULL, method = c("KW", "KW_dunn", "wilcox", "t.test", "anova", "scheirerRayHare", "lm", "lme", "glmm")[1], ... )
group
default NULL; a colname of sample_table
used to compare values across groups.
by_group
default NULL; perform differential test among groups (group
parameter) within each group (by_group
parameter).
method
default "KW"; see the following available options:
KW: Kruskal-Wallis Rank Sum Test for all groups (>= 2)
Dunn's Kruskal-Wallis Multiple Comparisons, see dunnTest
function in FSA
package
Wilcoxon Rank Sum and Signed Rank Tests for all paired groups
Student's t-Test for all paired groups
Duncan's new multiple range test for one-way anova; see duncan.test
function of agricolae
package.
For multi-factor anova, see aov
Scheirer Ray Hare test for nonparametric test used for a two-way factorial experiment;
see scheirerRayHare
function of rcompanion
package
Linear model based on the lm
function
lme: Linear Mixed Effect Model based on the lmerTest
package.
The formula
parameter should be provided.
Generalized linear mixed model (GLMM) based on the glmmTMB package.
The formula
and family
parameters are needed.
Please refer to glmmTMB package to select the family function, e.g. family = glmmTMB::lognormal(link = "log")
.
The usage of formula is similar with that in 'lme' method.
For the details of return table, please refer to the help document of trans_diff class.
...
parameters passed to cal_diff
function of trans_alpha
class.
res_diff
stored in the object.
In the data frame, 'Group' column means that the group has the maximum median or mean value across the test groups;
For non-parametric methods, median value; For t.test, mean value.
\donttest{ t1$cal_diff(group = "Group", method = "KW") t1$cal_diff(group = "Group", method = "anova") }
plot_diff()
Plot environmental variables across groups and add the significance label.
trans_env$plot_diff(...)
...
parameters passed to plot_alpha
in trans_alpha
class.
Please see plot_alpha
function of trans_alpha
for all the available parameters.
cal_autocor()
Calculate the autocorrelations among environmental variables.
trans_env$cal_autocor( group = NULL, ggpairs = TRUE, color_values = RColorBrewer::brewer.pal(8, "Dark2"), alpha = 0.8, ... )
group
default NULL; a colname of sample_table; used to perform calculations for different groups.
ggpairs
default TRUE; whether use GGally::ggpairs
function to plot the correlation results.
If ggpairs = FALSE
, the function will output a table with all the values instead of a graph.
In this case, the function will call cal_cor
to calculate autocorrelation instead of using the ggpairs function in GGally,
so please use parameter passing to control more options.
color_values
default RColorBrewer::brewer.pal
(8, "Dark2"); colors palette.
alpha
default 0.8; the alpha value to add transparency in colors; useful when group is not NULL.
...
parameters passed to GGally::ggpairs
when ggpairs = TRUE
or
passed to cal_cor
of trans_env
class when ggpairs = FALSE
.
ggmatrix
when ggpairs = TRUE
or data.frame object when ggpairs = FALSE
.
\dontrun{ # Spearman correlation t1$cal_autocor(upper = list(continuous = GGally::wrap("cor", method= "spearman"))) }
cal_ordination()
Redundancy analysis (RDA) and Correspondence Analysis (CCA) based on the vegan
package.
trans_env$cal_ordination( method = c("RDA", "dbRDA", "CCA")[1], feature_sel = FALSE, taxa_level = NULL, taxa_filter_thres = NULL, use_measure = NULL, add_matrix = NULL, ... )
method
default c("RDA", "dbRDA", "CCA")[1]; the ordination method.
feature_sel
default FALSE; whether perform the feature selection based on forward selection method.
taxa_level
default NULL; If use RDA or CCA, provide the taxonomic rank, such as "Phylum" or "Genus";
If use otu_table; please set taxa_level = "OTU"
.
taxa_filter_thres
default NULL; relative abundance threshold used to filter taxa when method is "RDA" or "CCA".
use_measure
default NULL; a name of beta diversity matrix; only available when parameter method = "dbRDA"
;
If not provided, use the first beta diversity matrix in the microtable$beta_diversity
automatically.
add_matrix
default NULL; additional distance matrix provided, when the user does not want to use the beta diversity matrix within the dataset; only available when method = "dbRDA".
...
paremeters passed to dbrda
, rda
or cca
function according to the method
parameter.
res_ordination
and res_ordination_R2
stored in the object.
\donttest{ t1$cal_ordination(method = "dbRDA", use_measure = "bray") t1$cal_ordination(method = "RDA", taxa_level = "Genus") t1$cal_ordination(method = "CCA", taxa_level = "Genus") }
cal_ordination_anova()
Use anova to test the significance of the terms and axis in ordination.
trans_env$cal_ordination_anova(...)
...
parameters passed to anova
function.
res_ordination_terms and res_ordination_axis
stored in the object.
\donttest{ t1$cal_ordination_anova() }
cal_ordination_envfit()
Fit each environmental vector onto the ordination to obtain the contribution of each variable.
trans_env$cal_ordination_envfit(...)
...
the parameters passed to vegan::envfit
function.
res_ordination_envfit
stored in the object.
\donttest{ t1$cal_ordination_envfit() }
trans_ordination()
Transform ordination results for the following plot.
trans_env$trans_ordination( show_taxa = 10, adjust_arrow_length = FALSE, min_perc_env = 0.1, max_perc_env = 0.8, min_perc_tax = 0.1, max_perc_tax = 0.8 )
show_taxa
default 10; taxa number shown in the plot.
adjust_arrow_length
default FALSE; whether adjust the arrow length to be clearer.
min_perc_env
default 0.1; used for scaling up the minimum of env arrow; multiply by the maximum distance between samples and origin.
max_perc_env
default 0.8; used for scaling up the maximum of env arrow; multiply by the maximum distance between samples and origin.
min_perc_tax
default 0.1; used for scaling up the minimum of tax arrow; multiply by the maximum distance between samples and origin.
max_perc_tax
default 0.8; used for scaling up the maximum of tax arrow; multiply by the maximum distance between samples and origin.
res_ordination_trans
stored in the object.
\donttest{ t1$trans_ordination(adjust_arrow_length = TRUE, min_perc_env = 0.1, max_perc_env = 1) }
plot_ordination()
plot ordination result.
trans_env$plot_ordination( plot_color = NULL, plot_shape = NULL, color_values = RColorBrewer::brewer.pal(8, "Dark2"), shape_values = c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14), env_text_color = "black", env_arrow_color = "grey30", taxa_text_color = "firebrick1", taxa_arrow_color = "firebrick1", env_text_size = 3.7, taxa_text_size = 3, taxa_text_italic = TRUE, plot_type = "point", point_size = 3, point_alpha = 0.8, centroid_segment_alpha = 0.6, centroid_segment_size = 1, centroid_segment_linetype = 3, ellipse_chull_fill = TRUE, ellipse_chull_alpha = 0.1, ellipse_level = 0.9, ellipse_type = "t", add_sample_label = NULL, env_nudge_x = NULL, env_nudge_y = NULL, taxa_nudge_x = NULL, taxa_nudge_y = NULL, ... )
plot_color
default NULL; a colname of sample_table
to assign colors to different groups.
plot_shape
default NULL; a colname of sample_table
to assign shapes to different groups.
color_values
default RColorBrewer::brewer.pal
(8, "Dark2"); color pallete for different groups.
shape_values
default c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14); a vector for point shape types of groups, see ggplot2 tutorial.
env_text_color
default "black"; environmental variable text color.
env_arrow_color
default "grey30"; environmental variable arrow color.
taxa_text_color
default "firebrick1"; taxa text color.
taxa_arrow_color
default "firebrick1"; taxa arrow color.
env_text_size
default 3.7; environmental variable text size.
taxa_text_size
default 3; taxa text size.
taxa_text_italic
default TRUE; "italic"; whether use "italic" style for the taxa text.
plot_type
default "point"; plotting type of samples; one or more elements of "point", "ellipse", "chull", "centroid" and "none"; "none" denotes nothing.
add point
add confidence ellipse for points of each group
add convex hull for points of each group
add centroid line of each group
point_size
default 3; point size in plot when "point" is in plot_type
.
point_alpha
default .8; point transparency in plot when "point" is in plot_type
.
centroid_segment_alpha
default 0.6; segment transparency in plot when "centroid" is in plot_type
.
centroid_segment_size
default 1; segment size in plot when "centroid" is in plot_type
.
centroid_segment_linetype
default 3; an integer; the line type related with centroid in plot when "centroid" is in plot_type
.
ellipse_chull_fill
default TRUE; whether fill colors to the area of ellipse or chull.
ellipse_chull_alpha
default 0.1; color transparency in the ellipse or convex hull depending on whether "ellipse" or "centroid" is in plot_type
.
ellipse_level
default .9; confidence level of ellipse when "ellipse" is in plot_type
.
ellipse_type
default "t"; ellipse type when "ellipse" is in plot_type
; see type parameter in stat_ellipse
function of ggplot2 package.
add_sample_label
default NULL; the column name in sample table, if provided, show the point name in plot.
env_nudge_x
default NULL; numeric vector to adjust the env text x axis position; passed to nudge_x parameter of ggrepel::geom_text_repel
function;
default NULL represents automatic adjustment; the length must be same with the row number of object$res_ordination_trans$df_arrows
. For example,
if there are 5 env variables, env_nudge_x should be something like c(0.1, 0, -0.2, 0, 0)
.
Note that this parameter and env_nudge_y is generally used when the automatic text adjustment is not very well.
env_nudge_y
default NULL; numeric vector to adjust the env text y axis position; passed to nudge_y parameter of ggrepel::geom_text_repel function;
default NULL represents automatic adjustment; the length must be same with the row number of object$res_ordination_trans$df_arrows
. For example,
if there are 5 env variables, env_nudge_y should be something like c(0.1, 0, -0.2, 0, 0)
.
taxa_nudge_x
default NULL; numeric vector to adjust the taxa text x axis position; passed to nudge_x parameter of ggrepel::geom_text_repel function;
default NULL represents automatic adjustment; the length must be same with the row number of object$res_ordination_trans$df_arrows_spe
. For example,
if 3 taxa are shown, taxa_nudge_x should be something like c(0.3, -0.2, 0)
.
taxa_nudge_y
default NULL; numeric vector to adjust the taxa text y axis position; passed to nudge_y parameter of ggrepel::geom_text_repel function;
default NULL represents automatic adjustment; the length must be same with the row number of object$res_ordination_trans$df_arrows_spe
. For example,
if 3 taxa are shown, taxa_nudge_y should be something like c(-0.2, 0, 0.4)
.
...
paremeters passed to geom_point
for controlling sample points.
ggplot object.
\donttest{ t1$cal_ordination(method = "RDA") t1$trans_ordination(adjust_arrow_length = TRUE, max_perc_env = 1.5) t1$plot_ordination(plot_color = "Group") t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = c("point", "ellipse")) t1$plot_ordination(plot_color = "Group", plot_type = c("point", "chull")) t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"), centroid_segment_linetype = 1) t1$plot_ordination(plot_color = "Group", env_nudge_x = c(0.4, 0, 0, 0, 0, -0.2, 0, 0), env_nudge_y = c(0.6, 0, 0.2, 0.5, 0, 0.1, 0, 0.2)) }
cal_mantel()
Mantel test between beta diversity matrix and environmental data.
trans_env$cal_mantel( partial_mantel = FALSE, add_matrix = NULL, use_measure = NULL, method = "pearson", p_adjust_method = "fdr", by_group = NULL, ... )
partial_mantel
default FALSE; whether use partial mantel test; If TRUE, use other all measurements as the zdis in each calculation.
add_matrix
default NULL; additional distance matrix provided when the beta diversity matrix in the dataset is not used.
use_measure
default NULL; a name of beta diversity matrix. If necessary and not provided, use the first beta diversity matrix.
method
default "pearson"; one of "pearson", "spearman" and "kendall"; correlation method; see method parameter in vegan::mantel
function.
p_adjust_method
default "fdr"; p.adjust method; see method parameter of p.adjust
function for available options.
by_group
default NULL; one column name or number in sample_table; used to perform mantel test for different groups separately.
...
paremeters passed to mantel
of vegan package.
res_mantel
in object.
\donttest{ t1$cal_mantel(use_measure = "bray") t1$cal_mantel(partial_mantel = TRUE, use_measure = "bray") }
cal_cor()
Calculate the correlations between taxonomic abundance and environmental variables. Actually, it can also be applied to other correlation between any two variables from two tables.
trans_env$cal_cor( use_data = c("Genus", "all", "other")[1], cor_method = c("pearson", "spearman", "kendall", "maaslin2")[1], partial = FALSE, partial_fix = NULL, add_abund_table = NULL, filter_thres = 0, use_taxa_num = NULL, other_taxa = NULL, p_adjust_method = "fdr", p_adjust_type = c("All", "Taxa", "Env")[1], by_group = NULL, group_use = NULL, group_select = NULL, taxa_name_full = TRUE, tmp_input_maaslin2 = "tmp_input", tmp_output_maaslin2 = "tmp_output", ... )
use_data
default "Genus"; "Genus", "all" or "other";
"Genus" or other taxonomic names (e.g., "Phylum", "ASV"): invoke taxonomic abundance table in taxa_abund
list of the microtable
object;
"all": merge all the taxonomic abundance tables in taxa_abund
list into one; "other": provide additional taxa names by assigning other_taxa
parameter.
cor_method
default "pearson"; "pearson", "spearman", "kendall" or "maaslin2"; correlation method.
"pearson", "spearman" or "kendall" all refer to the correlation analysis based on the cor.test
function in R.
"maaslin2" is the method in Maaslin2
package for finding associations between metadata and potentially high-dimensional microbial multi-omics data.
partial
default FALSE; whether perform partial correlation based on the ppcor
package.
partial_fix
default NULL; selected environmental variable names used as third group of variables in all the partial correlations.
If NULL; all the variables (except the one for correlation) in the environmental data will be used as the third group of variables.
Otherwise, the function will control for the provided variables (one or more) in all the partial correlations,
and the variables in partial_fix
will not be employed anymore in the correlation analysis.
add_abund_table
default NULL; additional data table to be used. Row names must be sample names.
filter_thres
default 0; the abundance threshold, such as 0.0005 when the input is relative abundance. The features with abundances lower than filter_thres will be filtered. This parameter cannot be applied when add_abund_table parameter is provided.
use_taxa_num
default NULL; integer; a number used to select high abundant taxa; only useful when use_data
parameter is a taxonomic level, e.g., "Genus".
other_taxa
default NULL; character vector containing a series of feature names; available when use_data = "other"
;
provided names should be standard full names used to select taxa from all the tables in taxa_abund
list of the microtable
object;
please refer to the example.
p_adjust_method
default "fdr"; p.adjust method; see method parameter of p.adjust
function for available options.
p_adjust_method = "none"
can disable the p value adjustment.
p_adjust_type
default "All"; "All", "Taxa" or "Env"; P value adjustment type.
"Env": adjustment for each environmental variable separately;
"Taxa": adjustment for each taxon separately;
"All": adjustment for all the data together no matter whether by_group
is provided.
by_group
default NULL; one column name or number in sample_table; calculate correlations for different groups separately.
group_use
default NULL; numeric or character vector to select one column in sample_table for selecting samples; together with group_select.
group_select
default NULL; the group name used; remain samples within the group.
taxa_name_full
default TRUE; Whether use the complete taxonomic name of taxa.
tmp_input_maaslin2
default "tmp_input"; the temporary folder used to save the input files for Maaslin2.
tmp_output_maaslin2
default "tmp_output"; the temporary folder used to save the output files of Maaslin2.
...
parameters passed to Maaslin2
function of Maaslin2
package.
res_cor
stored in the object.
\donttest{ t2 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group", rf_taxa_level = "Genus") t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11]) t1$cal_cor(use_data = "other", p_adjust_method = "fdr", other_taxa = t2$res_diff$Taxa[1:40]) }
plot_cor()
Plot correlation heatmap.
trans_env$plot_cor( color_vector = c("#053061", "white", "#A50026"), color_palette = NULL, filter_feature = NULL, filter_env = NULL, keep_full_name = FALSE, keep_prefix = TRUE, text_y_order = NULL, text_x_order = NULL, xtext_angle = 30, xtext_size = 10, xtext_color = "black", ytext_italic = FALSE, ytext_size = NULL, ytext_color = "black", ytext_position = "right", sig_label_size = 4, font_family = NULL, cluster_ggplot = "none", cluster_height_rows = 0.2, cluster_height_cols = 0.2, na.value = "grey50", trans = "identity", ylab_type_italic = deprecated(), text_y_position = deprecated(), ... )
color_vector
default c("#053061", "white", "#A50026")
; colors with only three values representing low, middle and high values.
color_palette
default NULL; a customized palette with more color values to be used instead of the parameter color_vector
.
filter_feature
default NULL; character vector; used to filter features that only have labels in the filter_feature
vector.
For example, filter_feature = ""
can be used to remove features that only have "", no any "*".
filter_env
default NULL; character vector; used to filter environmental variables that only have labels in the filter_env
vector.
For example, filter_env = ""
can be used to remove features that only have "", no any "*".
keep_full_name
default FALSE; whether use the complete taxonomic name.
keep_prefix
default TRUE; whether retain the taxonomic prefix.
text_y_order
default NULL; character vector; customized text for y axis; shown in the plot from the top down.
The input should be consistent with the feature names in the res_cor
table.
text_x_order
default NULL; character vector; customized text for x axis.
xtext_angle
default 30; number ranging from 0 to 90; used to adjust x axis text angle.
xtext_size
default 10; x axis text size.
xtext_color
default "black"; x axis text color.
ytext_italic
default FALSE; whether use italic for y axis text.
ytext_size
default NULL; y axis text size. NULL means default ggplot2 value.
ytext_color
default "black"; y axis text color.
ytext_position
default "right"; "left" or "right"; the y axis text position.
sig_label_size
default 4; the size of significance label shown in the cell.
font_family
default NULL; font family used.
cluster_ggplot
default "none"; add clustering dendrogram for ggplot2
based heatmap. Available options: "none", "row", "col" or "both".
"none": no any clustering used; "row": add clustering for rows; "col": add clustering for columns; "both": add clustering for both rows and columns.
cluster_height_rows
default 0.2, the dendrogram plot height for rows; available when cluster_ggplot
is not "none".
cluster_height_cols
default 0.2, the dendrogram plot height for columns; available when cluster_ggplot
is not "none".
na.value
default "grey50"; the color for the missing values.
trans
default "identity"; the transformation for continuous scales in the legend;
see the trans
item in ggplot2::scale_colour_gradientn
.
ylab_type_italic
deprecated. Please use ytext_italic
argument instead.
text_y_position
deprecated. Please use ytext_position
argument instead.
...
paremeters passed to ggplot2::geom_tile
.
ggplot2 object.
\donttest{ t1$plot_cor() }
plot_scatterfit()
Scatter plot with fitted line based on the correlation or regression.
The most important thing is to make sure that the input x and y
have correponding sample orders. If one of x and y is a matrix, the other will be also transformed to matrix with Euclidean distance.
Then, both of them are transformed to be vectors. If x or y is a vector with a single value, x or y will be
assigned according to the column selection of the data_env
in the object.
trans_env$plot_scatterfit( x = NULL, y = NULL, group = NULL, group_order = NULL, color_values = RColorBrewer::brewer.pal(8, "Dark2"), shape_values = NULL, type = c("cor", "lm")[1], cor_method = "pearson", label_sep = ";", label.x.npc = "left", label.y.npc = "top", label.x = NULL, label.y = NULL, x_axis_title = "", y_axis_title = "", point_size = 5, point_alpha = 0.6, line_size = 0.8, line_color = "black", line_se = TRUE, line_se_color = "grey70", line_alpha = 0.5, pvalue_trim = 4, cor_coef_trim = 3, lm_equation = TRUE, lm_fir_trim = 2, lm_sec_trim = 2, lm_squ_trim = 2, ... )
x
default NULL; a single numeric or character value, a vector, or a distance matrix used for the x axis.
If x is a single value, it will be used to select the column of data_env
in the object.
If x is a distance matrix, it will be transformed to be a vector.
y
default NULL; a single numeric or character value, a vector, or a distance matrix used for the y axis.
If y is a single value, it will be used to select the column of data_env
in the object.
If y is a distance matrix, it will be transformed to be a vector.
group
default NULL; a character vector; if length is 1, must be a colname of sample_table
in the input dataset;
Otherwise, group should be a vector having same length with x/y (for vector) or column number of x/y (for matrix).
group_order
default NULL; a vector used to order groups, i.e. reorder the legend and colors in plot when group is not NULL;
If group_order is NULL and group is provided, the function can first check whether the group column of sample_table
is factor.
If group_order is provided, disable the group orders or factor levels in the group
column of sample_table
.
color_values
default RColorBrewer::brewer.pal
(8, "Dark2"); color pallete for different groups.
shape_values
default NULL; a numeric vector for point shape types of groups when group is not NULL, see ggplot2 tutorial.
type
default c("cor", "lm")[1]; "cor": correlation; "lm" for regression.
cor_method
default "pearson"; one of "pearson", "kendall" and "spearman"; correlation method.
label_sep
default ";"; the separator string between different label parts.
label.x.npc
default "left"; can be numeric or character vector of the same length as the number of groups and/or panels. If too short, they will be recycled.
value should be between 0 and 1. Coordinates to be used for positioning the label, expressed in "normalized parent coordinates"
allowed values include: i) one of c('right', 'left', 'center', 'centre', 'middle') for x-axis; ii) and one of c( 'bottom', 'top', 'center', 'centre', 'middle') for y-axis.
label.y.npc
default "top"; same usage with label.x.npc; also see label.y.npc
parameter of ggpubr::stat_cor
function.
label.x
default NULL; x axis absolute position for adding the statistic label.
label.y
default NULL; x axis absolute position for adding the statistic label.
x_axis_title
default ""; the title of x axis.
y_axis_title
default ""; the title of y axis.
point_size
default 5; point size value.
point_alpha
default 0.6; alpha value for the point color transparency.
line_size
default 0.8; line size value.
line_color
default "black"; fitted line color; only available when group = NULL
.
line_se
default TRUE; Whether show the confidence interval for the fitting.
line_se_color
default "grey70"; the color to fill the confidence interval when line_se = TRUE
.
line_alpha
default 0.5; alpha value for the color transparency of line confidence interval.
pvalue_trim
default 4; trim the decimal places of p value.
cor_coef_trim
default 3; trim the decimal places of correlation coefficient.
lm_equation
default TRUE; whether include the equation in the label when type = "lm"
.
lm_fir_trim
default 2; trim the decimal places of first coefficient in regression.
lm_sec_trim
default 2; trim the decimal places of second coefficient in regression.
lm_squ_trim
default 2; trim the decimal places of R square in regression.
...
other arguments passed to geom_text
or geom_label
.
ggplot.
\donttest{ t1$plot_scatterfit(x = 1, y = 2, type = "cor") t1$plot_scatterfit(x = 1, y = 2, type = "lm", point_alpha = .3) t1$plot_scatterfit(x = "pH", y = "TOC", type = "lm", group = "Group", line_se = FALSE) t1$plot_scatterfit(x = dataset$beta_diversity$bray[rownames(t1$data_env), rownames(t1$data_env)], y = "pH") }
print()
Print the trans_env object.
trans_env$print()
clone()
The objects of this class are cloneable with this method.
trans_env$clone(deep = FALSE)
deep
Whether to make a deep clone.
## ------------------------------------------------ ## Method `trans_env$new` ## ------------------------------------------------ data(dataset) data(env_data_16S) t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11]) ## ------------------------------------------------ ## Method `trans_env$cal_diff` ## ------------------------------------------------ t1$cal_diff(group = "Group", method = "KW") t1$cal_diff(group = "Group", method = "anova") ## ------------------------------------------------ ## Method `trans_env$cal_autocor` ## ------------------------------------------------ ## Not run: # Spearman correlation t1$cal_autocor(upper = list(continuous = GGally::wrap("cor", method= "spearman"))) ## End(Not run) ## ------------------------------------------------ ## Method `trans_env$cal_ordination` ## ------------------------------------------------ t1$cal_ordination(method = "dbRDA", use_measure = "bray") t1$cal_ordination(method = "RDA", taxa_level = "Genus") t1$cal_ordination(method = "CCA", taxa_level = "Genus") ## ------------------------------------------------ ## Method `trans_env$cal_ordination_anova` ## ------------------------------------------------ t1$cal_ordination_anova() ## ------------------------------------------------ ## Method `trans_env$cal_ordination_envfit` ## ------------------------------------------------ t1$cal_ordination_envfit() ## ------------------------------------------------ ## Method `trans_env$trans_ordination` ## ------------------------------------------------ t1$trans_ordination(adjust_arrow_length = TRUE, min_perc_env = 0.1, max_perc_env = 1) ## ------------------------------------------------ ## Method `trans_env$plot_ordination` ## ------------------------------------------------ t1$cal_ordination(method = "RDA") t1$trans_ordination(adjust_arrow_length = TRUE, max_perc_env = 1.5) t1$plot_ordination(plot_color = "Group") t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = c("point", "ellipse")) t1$plot_ordination(plot_color = "Group", plot_type = c("point", "chull")) t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"), centroid_segment_linetype = 1) t1$plot_ordination(plot_color = "Group", env_nudge_x = c(0.4, 0, 0, 0, 0, -0.2, 0, 0), env_nudge_y = c(0.6, 0, 0.2, 0.5, 0, 0.1, 0, 0.2)) ## ------------------------------------------------ ## Method `trans_env$cal_mantel` ## ------------------------------------------------ t1$cal_mantel(use_measure = "bray") t1$cal_mantel(partial_mantel = TRUE, use_measure = "bray") ## ------------------------------------------------ ## Method `trans_env$cal_cor` ## ------------------------------------------------ t2 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group", rf_taxa_level = "Genus") t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11]) t1$cal_cor(use_data = "other", p_adjust_method = "fdr", other_taxa = t2$res_diff$Taxa[1:40]) ## ------------------------------------------------ ## Method `trans_env$plot_cor` ## ------------------------------------------------ t1$plot_cor() ## ------------------------------------------------ ## Method `trans_env$plot_scatterfit` ## ------------------------------------------------ t1$plot_scatterfit(x = 1, y = 2, type = "cor") t1$plot_scatterfit(x = 1, y = 2, type = "lm", point_alpha = .3) t1$plot_scatterfit(x = "pH", y = "TOC", type = "lm", group = "Group", line_se = FALSE) t1$plot_scatterfit(x = dataset$beta_diversity$bray[rownames(t1$data_env), rownames(t1$data_env)], y = "pH")
## ------------------------------------------------ ## Method `trans_env$new` ## ------------------------------------------------ data(dataset) data(env_data_16S) t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11]) ## ------------------------------------------------ ## Method `trans_env$cal_diff` ## ------------------------------------------------ t1$cal_diff(group = "Group", method = "KW") t1$cal_diff(group = "Group", method = "anova") ## ------------------------------------------------ ## Method `trans_env$cal_autocor` ## ------------------------------------------------ ## Not run: # Spearman correlation t1$cal_autocor(upper = list(continuous = GGally::wrap("cor", method= "spearman"))) ## End(Not run) ## ------------------------------------------------ ## Method `trans_env$cal_ordination` ## ------------------------------------------------ t1$cal_ordination(method = "dbRDA", use_measure = "bray") t1$cal_ordination(method = "RDA", taxa_level = "Genus") t1$cal_ordination(method = "CCA", taxa_level = "Genus") ## ------------------------------------------------ ## Method `trans_env$cal_ordination_anova` ## ------------------------------------------------ t1$cal_ordination_anova() ## ------------------------------------------------ ## Method `trans_env$cal_ordination_envfit` ## ------------------------------------------------ t1$cal_ordination_envfit() ## ------------------------------------------------ ## Method `trans_env$trans_ordination` ## ------------------------------------------------ t1$trans_ordination(adjust_arrow_length = TRUE, min_perc_env = 0.1, max_perc_env = 1) ## ------------------------------------------------ ## Method `trans_env$plot_ordination` ## ------------------------------------------------ t1$cal_ordination(method = "RDA") t1$trans_ordination(adjust_arrow_length = TRUE, max_perc_env = 1.5) t1$plot_ordination(plot_color = "Group") t1$plot_ordination(plot_color = "Group", plot_shape = "Group", plot_type = c("point", "ellipse")) t1$plot_ordination(plot_color = "Group", plot_type = c("point", "chull")) t1$plot_ordination(plot_color = "Group", plot_type = c("point", "centroid"), centroid_segment_linetype = 1) t1$plot_ordination(plot_color = "Group", env_nudge_x = c(0.4, 0, 0, 0, 0, -0.2, 0, 0), env_nudge_y = c(0.6, 0, 0.2, 0.5, 0, 0.1, 0, 0.2)) ## ------------------------------------------------ ## Method `trans_env$cal_mantel` ## ------------------------------------------------ t1$cal_mantel(use_measure = "bray") t1$cal_mantel(partial_mantel = TRUE, use_measure = "bray") ## ------------------------------------------------ ## Method `trans_env$cal_cor` ## ------------------------------------------------ t2 <- trans_diff$new(dataset = dataset, method = "rf", group = "Group", rf_taxa_level = "Genus") t1 <- trans_env$new(dataset = dataset, add_data = env_data_16S[, 4:11]) t1$cal_cor(use_data = "other", p_adjust_method = "fdr", other_taxa = t2$res_diff$Taxa[1:40]) ## ------------------------------------------------ ## Method `trans_env$plot_cor` ## ------------------------------------------------ t1$plot_cor() ## ------------------------------------------------ ## Method `trans_env$plot_scatterfit` ## ------------------------------------------------ t1$plot_scatterfit(x = 1, y = 2, type = "cor") t1$plot_scatterfit(x = 1, y = 2, type = "lm", point_alpha = .3) t1$plot_scatterfit(x = "pH", y = "TOC", type = "lm", group = "Group", line_se = FALSE) t1$plot_scatterfit(x = dataset$beta_diversity$bray[rownames(t1$data_env), rownames(t1$data_env)], y = "pH")
trans_func
object for functional prediction.This class is a wrapper for a series of functional prediction analysis on species and communities, including the prokaryotic trait prediction based on Louca et al. (2016) <doi:10.1126/science.aaf4507> and Lim et al. (2020) <10.1038/s41597-020-0516-5>, or fungal trait prediction based on Nguyen et al. (2016) <10.1016/j.funeco.2015.06.006> and Polme et al. (2020) <doi:10.1007/s13225-020-00466-2>; functional redundancy calculation and metabolic pathway abundance prediction Abhauer et al. (2015) <10.1093/bioinformatics/btv287>.
func_group_list
store and show the function group list
new()
Create the trans_func
object. This function can identify the data type for Prokaryotes or Fungi automatically.
trans_func$new(dataset = NULL)
dataset
the object of microtable
Class.
for_what
: "prok" or "fungi" or NA, "prok" represent prokaryotes. "fungi" represent fungi. NA stand for unknown according to the Kingdom information.
In this case, if the user still want to use the function to identify species traits, please provide "prok" or "fungi" manually,
e.g. t1$for_what <- "prok"
.
data(dataset) t1 <- trans_func$new(dataset = dataset)
cal_spe_func()
Identify traits of each feature by matching taxonomic assignments to functional database.
trans_func$cal_spe_func( prok_database = c("FAPROTAX", "NJC19")[1], fungi_database = c("FUNGuild", "FungalTraits")[1], FUNGuild_confidence = c("Highly Probable", "Probable", "Possible") )
prok_database
default "FAPROTAX"; "FAPROTAX"
or "NJC19"
; select a prokaryotic trait database:
FAPROTAX; Reference: Louca et al. (2016). Decoupling function and taxonomy in the global ocean microbiome. Science, 353(6305), 1272. <doi:10.1126/science.aaf4507>
NJC19: Lim et al. (2020). Large-scale metabolic interaction network of the mouse and human gut microbiota. Scientific Data, 7(1). <10.1038/s41597-020-0516-5>. Note that the matching in this database is performed at the species level, hence utilizing it demands a higher level of precision in regards to the assignments of species in the taxonomic information table.
fungi_database
default "FUNGuild"; "FUNGuild"
or "FungalTraits"
; select a fungal trait database:
Nguyen et al. (2016) FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20(1), 241-248, <doi:10.1016/j.funeco.2015.06.006>
version: FungalTraits_1.2_ver_16Dec_2020V.1.2; Polme et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity 105, 1-16 (2020). <doi:10.1007/s13225-020-00466-2>
FUNGuild_confidence
default c("Highly Probable", "Probable", "Possible").
Selected 'confidenceRanking' when fungi_database = "FUNGuild"
.
res_spe_func
stored in object.
\donttest{ t1$cal_spe_func(prok_database = "FAPROTAX") }
cal_spe_func_perc()
Calculating the percentages of species with specific trait in communities. The percentages of the taxa with specific trait can reflect corresponding functional potential in the community. So this method is one representation of functional redundancy (FR) without the consideration of phylogenetic distance among taxa. The FR is defined:
where denotes the FR for sample k and function j.
is the species number in sample k.
is the number of species with function j in sample k.
is the abundance (counts) of species i in sample k.
trans_func$cal_spe_func_perc(abundance_weighted = FALSE, perc = TRUE, dec = 2)
abundance_weighted
default FALSE; whether use abundance of taxa. If FALSE, calculate the functional population percentage. If TRUE, calculate the functional individual percentage.
perc
default TRUE; whether to use percentages in the result. If TRUE, value is bounded between 0 and 100. If FALSE, the result is relative proportion ('abundance_weighted = FALSE') or relative abundance ('abundance_weighted = TRUE') bounded between 0 and 1.
dec
default 2; remained decimal places.
res_spe_func_perc
stored in the object.
\donttest{ t1$cal_spe_func_perc(abundance_weighted = TRUE) }
show_prok_func()
Show the annotation information for a function of prokaryotes from FAPROTAX database.
trans_func$show_prok_func(use_func = NULL)
use_func
default NULL; the function name.
None.
\donttest{ t1$show_prok_func(use_func = "methanotrophy") }
trans_spe_func_perc()
Transform the res_spe_func_perc
table to the long table format for the following visualization.
Also add the group information if the database has hierarchical groups.
trans_func$trans_spe_func_perc()
res_spe_func_perc_trans
stored in the object.
\donttest{ t1$trans_spe_func_perc() }
plot_spe_func_perc()
Plot the percentages of species with specific trait in communities.
trans_func$plot_spe_func_perc( add_facet = TRUE, order_x = NULL, color_gradient_low = "#00008B", color_gradient_high = "#9E0142" )
add_facet
default TRUE; whether use group names as the facets in the plot, see trans_func$func_group_list
object.
order_x
default NULL; character vector; to sort the x axis text; can be also used to select partial samples to show.
color_gradient_low
default "#00008B"; the color used as the low end in the color gradient.
color_gradient_high
default "#9E0142"; the color used as the high end in the color gradient.
ggplot2.
\donttest{ t1$plot_spe_func_perc() }
cal_tax4fun2()
Predict functional potential of communities with Tax4Fun2 method. The function was adapted from the raw Tax4Fun2 package to make it compatible with the microtable object. Pleas cite: Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environmental Microbiome 15, 11 (2020). <doi:10.1186/s40793-020-00358-7>
trans_func$cal_tax4fun2( blast_tool_path = NULL, path_to_reference_data = "Tax4Fun2_ReferenceData_v2", path_to_temp_folder = NULL, database_mode = "Ref99NR", normalize_by_copy_number = T, min_identity_to_reference = 97, use_uproc = T, num_threads = 1, normalize_pathways = F )
blast_tool_path
default NULL; the folder path, e.g., ncbi-blast-2.5.0+/bin ; blast tools folder downloaded from "ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+" ; e.g., ncbi-blast-2.5.0+-x64-win64.tar.gz for windows system; if blast_tool_path is NULL, search the tools in the environmental path variable.
path_to_reference_data
default "Tax4Fun2_ReferenceData_v2"; the path that points to files used in the prediction; The directory must contain the Ref99NR or Ref100NR folder; download Ref99NR.zip from "https://cloudstor.aarnet.edu.au/plus/s/DkoZIyZpMNbrzSw/download" or Ref100NR.zip from "https://cloudstor.aarnet.edu.au/plus/s/jIByczak9ZAFUB4/download".
path_to_temp_folder
default NULL; The temporary folder to store the logfile, intermediate file and result files; if NULL, use the default temporary in the computer system.
database_mode
default 'Ref99NR'; "Ref99NR" or "Ref100NR"; Ref99NR: 99% clustering reference database; Ref100NR: no clustering.
normalize_by_copy_number
default TRUE; whether normalize the result by the 16S rRNA copy number in the genomes.
min_identity_to_reference
default 97; the sequences identity threshold used for finding the nearest species.
use_uproc
default TRUE; whether use UProC to functionally anotate the genomes in the reference data.
num_threads
default 1; the threads used in the blastn.
normalize_pathways
default FALSE; Different to Tax4Fun, when converting from KEGG functions to KEGG pathways, Tax4Fun2 does not equally split KO gene abundances between pathways a functions is affiliated to. The full predicted abundance is affiliated to each pathway. Use TRUE to split the abundances (default is FALSE).
res_tax4fun2_KO
and res_tax4fun2_pathway
in object.
\dontrun{ t1$cal_tax4fun2(blast_tool_path = "ncbi-blast-2.5.0+/bin", path_to_reference_data = "Tax4Fun2_ReferenceData_v2") }
cal_tax4fun2_FRI()
Calculate (multi-) functional redundancy index (FRI) of prokaryotic community with Tax4Fun2 method. This function is used to calculating aFRI and rFRI use the intermediate files generated by the function cal_tax4fun2(). please also cite: Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environmental Microbiome 15, 11 (2020). <doi:10.1186/s40793-020-00358-7>
trans_func$cal_tax4fun2_FRI()
res_tax4fun2_aFRI and res_tax4fun2_rFRI in object.
\dontrun{ t1$cal_tax4fun2_FRI() }
clone()
The objects of this class are cloneable with this method.
trans_func$clone(deep = FALSE)
deep
Whether to make a deep clone.
## ------------------------------------------------ ## Method `trans_func$new` ## ------------------------------------------------ data(dataset) t1 <- trans_func$new(dataset = dataset) ## ------------------------------------------------ ## Method `trans_func$cal_spe_func` ## ------------------------------------------------ t1$cal_spe_func(prok_database = "FAPROTAX") ## ------------------------------------------------ ## Method `trans_func$cal_spe_func_perc` ## ------------------------------------------------ t1$cal_spe_func_perc(abundance_weighted = TRUE) ## ------------------------------------------------ ## Method `trans_func$show_prok_func` ## ------------------------------------------------ t1$show_prok_func(use_func = "methanotrophy") ## ------------------------------------------------ ## Method `trans_func$trans_spe_func_perc` ## ------------------------------------------------ t1$trans_spe_func_perc() ## ------------------------------------------------ ## Method `trans_func$plot_spe_func_perc` ## ------------------------------------------------ t1$plot_spe_func_perc() ## ------------------------------------------------ ## Method `trans_func$cal_tax4fun2` ## ------------------------------------------------ ## Not run: t1$cal_tax4fun2(blast_tool_path = "ncbi-blast-2.5.0+/bin", path_to_reference_data = "Tax4Fun2_ReferenceData_v2") ## End(Not run) ## ------------------------------------------------ ## Method `trans_func$cal_tax4fun2_FRI` ## ------------------------------------------------ ## Not run: t1$cal_tax4fun2_FRI() ## End(Not run)
## ------------------------------------------------ ## Method `trans_func$new` ## ------------------------------------------------ data(dataset) t1 <- trans_func$new(dataset = dataset) ## ------------------------------------------------ ## Method `trans_func$cal_spe_func` ## ------------------------------------------------ t1$cal_spe_func(prok_database = "FAPROTAX") ## ------------------------------------------------ ## Method `trans_func$cal_spe_func_perc` ## ------------------------------------------------ t1$cal_spe_func_perc(abundance_weighted = TRUE) ## ------------------------------------------------ ## Method `trans_func$show_prok_func` ## ------------------------------------------------ t1$show_prok_func(use_func = "methanotrophy") ## ------------------------------------------------ ## Method `trans_func$trans_spe_func_perc` ## ------------------------------------------------ t1$trans_spe_func_perc() ## ------------------------------------------------ ## Method `trans_func$plot_spe_func_perc` ## ------------------------------------------------ t1$plot_spe_func_perc() ## ------------------------------------------------ ## Method `trans_func$cal_tax4fun2` ## ------------------------------------------------ ## Not run: t1$cal_tax4fun2(blast_tool_path = "ncbi-blast-2.5.0+/bin", path_to_reference_data = "Tax4Fun2_ReferenceData_v2") ## End(Not run) ## ------------------------------------------------ ## Method `trans_func$cal_tax4fun2_FRI` ## ------------------------------------------------ ## Not run: t1$cal_tax4fun2_FRI() ## End(Not run)
trans_network
object for network analysis.This class is a wrapper for a series of network analysis methods, including the network construction, topological attributes analysis, eigengene analysis, network subsetting, node and edge properties, network visualization and other operations.
new()
Create the trans_network
object, store the important intermediate data
and calculate correlations if cor_method
parameter is not NULL.
trans_network$new( dataset = NULL, cor_method = NULL, use_WGCNA_pearson_spearman = FALSE, use_NetCoMi_pearson_spearman = FALSE, use_sparcc_method = c("NetCoMi", "SpiecEasi")[1], taxa_level = "OTU", filter_thres = 0, nThreads = 1, SparCC_simu_num = 100, env_cols = NULL, add_data = NULL, ... )
dataset
default NULL; the object of microtable
class. Default NULL means customized analysis.
cor_method
default NULL; NULL or one of "bray", "pearson", "spearman", "sparcc", "bicor", "cclasso" and "ccrepe";
All the methods refered to NetCoMi
package are performed based on netConstruct
function of NetCoMi
package and require
NetCoMi
to be installed from Github (https://github.com/stefpeschel/NetCoMi);
For the algorithm details, please see Peschel et al. 2020 Brief. Bioinform <doi: 10.1093/bib/bbaa290>;
NULL denotes non-correlation network, i.e. do not use correlation-based network. If so, the return res_cor_p list will be NULL.
1-B, where B is Bray-Curtis dissimilarity; based on vegan::vegdist
function
Pearson correlation; If use_WGCNA_pearson_spearman
and use_NetCoMi_pearson_spearman
are both FALSE,
use the function cor.test
in R; use_WGCNA_pearson_spearman = TRUE
invoke corAndPvalue
function of WGCNA
package;
use_NetCoMi_pearson_spearman = TRUE
invoke netConstruct
function of NetCoMi
package
Spearman correlation; other details are same with the 'pearson' option
SparCC algorithm (Friedman & Alm, PLoS Comp Biol, 2012, <doi:10.1371/journal.pcbi.1002687>);
use NetCoMi package when use_sparcc_method = "NetCoMi"
; use SpiecEasi
package when use_sparcc_method = "SpiecEasi"
and require SpiecEasi
to be installed from Github
(https://github.com/zdk123/SpiecEasi)
Calculate biweight midcorrelation efficiently for matrices based on WGCNA::bicor
function;
This option can invoke netConstruct
function of NetCoMi
package;
Make sure WGCNA
and NetCoMi
packages are both installed
Correlation inference of Composition data through Lasso method based on netConstruct
function of NetCoMi
package;
for details, see NetCoMi::cclasso
function
Calculates compositionality-corrected p-values and q-values for compositional data
using an arbitrary distance metric based on NetCoMi::netConstruct
function; also see NetCoMi::ccrepe
function
use_WGCNA_pearson_spearman
default FALSE; whether use WGCNA package to calculate correlation when cor_method
= "pearson" or "spearman".
use_NetCoMi_pearson_spearman
default FALSE; whether use NetCoMi package to calculate correlation when cor_method
= "pearson" or "spearman".
The important difference between NetCoMi and others is the features of zero handling and data normalization; See <doi: 10.1093/bib/bbaa290>.
use_sparcc_method
default c("NetCoMi", "SpiecEasi")[1]
;
use NetCoMi
package or SpiecEasi
package to perform SparCC when cor_method = "sparcc"
.
taxa_level
default "OTU"; taxonomic rank; 'OTU' denotes using feature abundance table;
other available options should be one of the colnames of tax_table
of input dataset.
filter_thres
default 0; the relative abundance threshold.
nThreads
default 1; the CPU thread number; available when use_WGCNA_pearson_spearman = TRUE
or use_sparcc_method = "SpiecEasi"
.
SparCC_simu_num
default 100; SparCC simulation number for bootstrap when use_sparcc_method = "SpiecEasi"
.
env_cols
default NULL; numeric or character vector to select the column names of environmental data in dataset$sample_table;
the environmental data can be used in the correlation network (as the nodes) or FlashWeave
network.
add_data
default NULL; provide environmental variable table additionally instead of env_cols
parameter; rownames must be sample names.
...
parameters pass to NetCoMi::netConstruct
for other operations, such as zero handling and/or data normalization
when cor_method and other parameters refer to NetCoMi
package.
res_cor_p
list with the correlation (association) matrix and p value matrix. Note that when cor_method
and other parameters
refer to NetCoMi
package, the p value table are all zero as the significant associations have been selected.
\donttest{ data(dataset) # for correlation network t1 <- trans_network$new(dataset = dataset, cor_method = "pearson", taxa_level = "OTU", filter_thres = 0.0002) # for non-correlation network t1 <- trans_network$new(dataset = dataset, cor_method = NULL) }
cal_network()
Construct network based on the igraph
package or SpiecEasi
package or julia FlashWeave
package or beemStatic
package.
trans_network$cal_network( network_method = c("COR", "SpiecEasi", "gcoda", "FlashWeave", "beemStatic")[1], COR_p_thres = 0.01, COR_p_adjust = "fdr", COR_weight = TRUE, COR_cut = 0.6, COR_optimization = FALSE, COR_optimization_low_high = c(0.01, 0.8), COR_optimization_seq = 0.01, SpiecEasi_method = "mb", FlashWeave_tempdir = NULL, FlashWeave_meta_data = FALSE, FlashWeave_other_para = "alpha=0.01,sensitive=true,heterogeneous=true", FlashWeave_gml = NULL, beemStatic_t_strength = 0.001, beemStatic_t_stab = 0.8, add_taxa_name = "Phylum", delete_unlinked_nodes = TRUE, usename_rawtaxa_notOTU = FALSE, ... )
network_method
default "COR"; "COR", "SpiecEasi", "gcoda", "FlashWeave" or "beemStatic";
network_method = NULL
means skipping the network construction for the customized use.
The option details:
correlation-based network; use the correlation and p value matrices in res_cor_p
list stored in the object;
See Deng et al. (2012) <doi:10.1186/1471-2105-13-113> for other details
SpiecEasi
network; relies on algorithms of sparse neighborhood and inverse covariance selection;
belong to the category of conditional dependence and graphical models;
see https://github.com/zdk123/SpiecEasi for installing the R package;
see Kurtz et al. (2015) <doi:10.1371/journal.pcbi.1004226> for the algorithm details
hypothesize the logistic normal distribution of microbiome data; use penalized maximum likelihood method to estimate
the sparse structure of inverse covariance for latent normal variables to address the high dimensionality of the microbiome data;
belong to the category of conditional dependence and graphical models;
depend on the R NetCoMi
package https://github.com/stefpeschel/NetCoMi;
see FANG et al. (2017) <doi:10.1089/cmb.2017.0054> for the algorithm details
FlashWeave
network; Local-to-global learning framework; belong to the category of conditional dependence and graphical models;
good performance on heterogenous datasets to find direct associations among taxa;
see https://github.com/meringlab/FlashWeave.jl for installing julia
language and
FlashWeave
package; julia must be in the computer system env path, otherwise the program can not find it;
see Tackmann et al. (2019) <doi:10.1016/j.cels.2019.08.002> for the algorithm details
beemStatic
network;
extend generalized Lotka-Volterra model to cases of cross-sectional datasets to infer interaction among taxa based on expectation-maximization algorithm;
see https://github.com/CSB5/BEEM-static for installing the R package;
see Li et al. (2021) <doi:10.1371/journal.pcbi.1009343> for the algorithm details
COR_p_thres
default 0.01; the p value threshold for the correlation-based network.
COR_p_adjust
default "fdr"; p value adjustment method, see method
parameter of p.adjust
function for available options,
in which COR_p_adjust = "none"
means giving up the p value adjustment.
COR_weight
default TRUE; whether use correlation coefficient as the weight of edges; FALSE represents weight = 1 for all edges.
COR_cut
default 0.6; correlation coefficient threshold for the correlation network.
COR_optimization
default FALSE; whether use random matrix theory (RMT) based method to determine the correlation coefficient; see https://doi.org/10.1186/1471-2105-13-113
COR_optimization_low_high
default c(0.01, 0.8)
; the low and high value threshold used for the RMT optimization; only useful when COR_optimization = TRUE.
COR_optimization_seq
default 0.01; the interval of correlation coefficient used for RMT optimization; only useful when COR_optimization = TRUE.
SpiecEasi_method
default "mb"; either 'glasso' or 'mb';see spiec.easi function in package SpiecEasi and https://github.com/zdk123/SpiecEasi.
FlashWeave_tempdir
default NULL; The temporary directory used to save the temporary files for running FlashWeave; If not assigned, use the system user temp.
FlashWeave_meta_data
default FALSE; whether use env data for the optimization, If TRUE, the function automatically find the env_data
in the object and
generate a file for meta_data_path parameter of FlashWeave package.
FlashWeave_other_para
default "alpha=0.01,sensitive=true,heterogeneous=true"
; the parameters passed to julia FlashWeave package;
user can change the parameters or add more according to FlashWeave help document;
An exception is meta_data_path parameter as it is generated based on the data inside the object, see FlashWeave_meta_data parameter for the description.
FlashWeave_gml
default NULL; The path of FlashWeave output gml file for customized usage. This parameter is provided for some customized needs. For instance, it can be cumbersome to input bacterial and fungal abundances as separate input files for network analysis using the above parameter. Users can run FlashWeave on their own, and then provide the resulting gml file to this parameter, which allows them to continue using other functions.
beemStatic_t_strength
default 0.001; for network_method = "beemStatic"; the threshold used to limit the number of interactions (strength); same with the t.strength parameter in showInteraction function of beemStatic package.
beemStatic_t_stab
default 0.8; for network_method = "beemStatic"; the threshold used to limit the number of interactions (stability); same with the t.stab parameter in showInteraction function of beemStatic package.
add_taxa_name
default "Phylum"; one or more taxonomic rank name; used to add taxonomic rank name to network node properties.
delete_unlinked_nodes
default TRUE; whether delete the nodes without any link.
usename_rawtaxa_notOTU
default FALSE; whether use OTU name as representatives of taxa when taxa_level != "OTU"
.
Default FALSE
means using taxonomic information of taxa_level
instead of OTU name.
...
parameters pass to SpiecEasi::spiec.easi
when network_method = "SpiecEasi"
;
pass to NetCoMi::netConstruct
when network_method = "gcoda"
;
pass to beemStatic::func.EM
when network_method = "beemStatic"
.
res_network
stored in object.
\dontrun{ # for correlation network t1 <- trans_network$new(dataset = dataset, cor_method = "pearson", taxa_level = "OTU", filter_thres = 0.001) t1$cal_network(COR_p_thres = 0.05, COR_cut = 0.6) t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.003) t1$cal_network(network_method = "SpiecEasi", SpiecEasi_method = "mb") t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.005) t1$cal_network(network_method = "beemStatic") t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.001) t1$cal_network(network_method = "FlashWeave") }
cal_module()
Calculate network modules and add module names to the network node properties.
trans_network$cal_module( method = "cluster_fast_greedy", module_name_prefix = "M" )
method
default "cluster_fast_greedy"; the method used to find the optimal community structure of a graph;
the following are available functions (options) from igraph package: "cluster_fast_greedy"
, "cluster_walktrap"
, "cluster_edge_betweenness"
, "cluster_infomap"
, "cluster_label_prop"
, "cluster_leading_eigen"
, "cluster_louvain"
, "cluster_spinglass"
, "cluster_optimal"
.
For the details of these functions, please see the help document, such as help(cluster_fast_greedy)
;
Note that the default "cluster_fast_greedy"
method can not be applied to directed network.
If directed network is provided, the function can automatically switch the default method from "cluster_fast_greedy"
to "cluster_walktrap"
.
module_name_prefix
default "M"; the prefix of module names; module names are made of the module_name_prefix and numbers; numbers are assigned according to the sorting result of node numbers in modules with decreasing trend.
res_network
with modules, stored in object.
\donttest{ t1 <- trans_network$new(dataset = dataset, cor_method = "pearson", taxa_level = "OTU", filter_thres = 0.0002) t1$cal_network(COR_p_thres = 0.01, COR_cut = 0.6) t1$cal_module(method = "cluster_fast_greedy") }
save_network()
Save network as gexf style, which can be opened by Gephi (https://gephi.org/).
trans_network$save_network(filepath = "network.gexf", ...)
filepath
default "network.gexf"; file path to save the network.
...
parameters pass to gexf
function of rgexf package except for nodes
,
edges
, edgesLabel
, edgesWeight
, nodesAtt
, edgesAtt
and meta
.
None
\dontrun{ t1$save_network(filepath = "network.gexf") }
cal_network_attr()
Calculate network properties.
trans_network$cal_network_attr()
res_network_attr
stored in object.
\donttest{ t1$cal_network_attr() }
get_node_table()
Get the node property table. The properties include the node names, modules allocation, degree, betweenness, abundance, taxonomy, within-module connectivity (zi) and among-module connectivity (Pi) <doi:10.1186/1471-2105-13-113; 10.1016/j.geoderma.2022.115866>.
trans_network$get_node_table(node_roles = TRUE)
node_roles
default TRUE; whether calculate the node roles <doi:10.1038/nature03288; 10.1186/1471-2105-13-113>. The role of node i is characterized by its within-module connectivity (zi) and among-module connectivity (Pi) as follows
where is the number of links of node
to other nodes in its module
,
and
are the average and standard deviation of within-module connectivity, respectively
over all the nodes in module
,
is the number of links of node
in the whole network,
is the number of links from node
to nodes in module
, and
is the number of modules in the network.
res_node_table
in object; Abundance expressed as a percentage;
betweenness_centrality: betweenness centrality; betweenness_centrality: closeness centrality; eigenvector_centrality: eigenvector centrality;
z: within-module connectivity; p: among-module connectivity.
\donttest{ t1$get_node_table(node_roles = TRUE) }
get_edge_table()
Get the edge property table, including connected nodes, label and weight.
trans_network$get_edge_table()
res_edge_table
in object.
\donttest{ t1$get_edge_table() }
get_adjacency_matrix()
Get the adjacency matrix from the network graph.
trans_network$get_adjacency_matrix(...)
...
parameters passed to as_adjacency_matrix function of igraph
package.
res_adjacency_matrix
in object.
\donttest{ t1$get_adjacency_matrix(attr = "weight") }
plot_network()
Plot the network based on a series of methods from other packages, such as igraph
, ggraph
and networkD3
.
The networkD3 package provides dynamic network. It is especially useful for a glimpse of the whole network structure and finding
the interested nodes and edges in a large network. In contrast, the igraph and ggraph methods are suitable for relatively small network.
trans_network$plot_network( method = c("igraph", "ggraph", "networkD3")[1], node_label = "name", node_color = NULL, ggraph_layout = "fr", ggraph_node_size = 2, ggraph_node_text = TRUE, ggraph_text_color = NULL, ggraph_text_size = 3, networkD3_node_legend = TRUE, networkD3_zoom = TRUE, ... )
method
default "igraph"; The available options:
call plot.igraph
function in igraph
package for a static network; see plot.igraph for the parameters
call ggraph
function in ggraph
package for a static network
use forceNetwork function in networkD3
package for a dynamic network; see forceNetwork function for the parameters
node_label
default "name"; node label shown in the plot for method = "ggraph"
or method = "networkD3"
;
Please see the column names of object$res_node_table, which is the returned table of function object$get_node_table;
User can select other column names in res_node_table.
node_color
default NULL; node color assignment for method = "ggraph"
or method = "networkD3"
;
Select a column name of object$res_node_table
, such as "module".
ggraph_layout
default "fr"; for method = "ggraph"
; see layout
parameter of create_layout
function in ggraph
package.
ggraph_node_size
default 2; for method = "ggraph"
; the node size.
ggraph_node_text
default TRUE; for method = "ggraph"
; whether show the label text of nodes.
ggraph_text_color
default NULL; for method = "ggraph"
; a column name of object$res_node_table used to assign label text colors.
ggraph_text_size
default 3; for method = "ggraph"
; the node label text size.
networkD3_node_legend
default TRUE; used for method = "networkD3"
; logical value to enable node colour legends;
Please see the legend parameter in networkD3::forceNetwork function.
networkD3_zoom
default TRUE; used for method = "networkD3"
; logical value to enable (TRUE) or disable (FALSE) zooming;
Please see the zoom parameter in networkD3::forceNetwork function.
...
parameters passed to plot.igraph
function when method = "igraph"
or forceNetwork function when method = "networkD3"
.
network plot.
\donttest{ t1$plot_network(method = "igraph", layout = layout_with_kk) t1$plot_network(method = "ggraph", node_color = "module") t1$plot_network(method = "networkD3", node_color = "module") }
cal_eigen()
Calculate eigengenes of modules, i.e. the first principal component based on PCA analysis, and the percentage of variance <doi:10.1186/1471-2105-13-113>.
trans_network$cal_eigen()
res_eigen
and res_eigen_expla
in object.
\donttest{ t1$cal_eigen() }
plot_taxa_roles()
Plot the roles or metrics of nodes based on the res_node_table
data (coming from function get_node_table
) stored in the object.
trans_network$plot_taxa_roles( use_type = c(1, 2)[1], roles_color_background = FALSE, roles_color_values = NULL, add_label = FALSE, add_label_group = c("Network hubs", "Module hubs", "Connectors"), add_label_text = "name", label_text_size = 4, label_text_color = "grey50", label_text_italic = FALSE, label_text_parse = FALSE, plot_module = FALSE, x_lim = c(0, 1), use_level = "Phylum", show_value = c("z", "p"), show_number = 1:10, plot_color = "Phylum", plot_shape = "taxa_roles", plot_size = "Abundance", color_values = RColorBrewer::brewer.pal(12, "Paired"), shape_values = c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14), ... )
use_type
default 1; 1 or 2; 1 represents taxa roles plot (node roles include Module hubs, Network hubs,
Connectors and Peripherals <doi:10.1038/nature03288; 10.1186/1471-2105-13-113>).
The 'p' column (Pi, among-module connectivity) in res_node_table
table is used in x-axis. The 'z' column (Zi, within-module connectivity) is used in y-axis;
2 represents the layered plot with taxa as x axis and the index (e.g., Zi and Pi) as y axis.
Please refer to res_node_table
data stored in the object for the detailed information.
roles_color_background
default FALSE; for use_type=1; TRUE: use background colors for each area; FALSE: use classic point colors.
roles_color_values
default NULL; for use_type=1; color palette for background or points.
add_label
default FALSE; for use_type = 1; whether add labels for the points.
add_label_group
default c("Network hubs", "Module hubs", "Connectors");
If add_label = TRUE
, which part in taxa_roles
column is used to show labels; character vectors.
add_label_text
default "name"; If add_label = TRUE; which column of object$res_node_table is used to label the text.
label_text_size
default 4; The text size of the label.
label_text_color
default "grey50"; The text color of the label.
label_text_italic
default FALSE; whether use italic style for the label text.
label_text_parse
default FALSE; whether parse the label text. See the parse parameter in ggrepel::geom_text_repel
function.
plot_module
default FALSE; for use_type=1; whether plot the modules information.
x_lim
default c(0, 1); for use_type=1; x axis range when roles_color_background = FALSE.
use_level
default "Phylum"; for use_type=2; used taxonomic level in x axis.
show_value
default c("z", "p"); for use_type=2; indexes used in y axis. Please see res_node_table
in the object for other available indexes.
show_number
default 1:10; for use_type=2; showed number in x axis, sorting according to the nodes number.
plot_color
default "Phylum"; for use_type=2; variable for color.
plot_shape
default "taxa_roles"; for use_type=2; variable for shape.
plot_size
default "Abundance"; for use_type=2; used for point size; a fixed number (e.g. 5) is also acceptable.
color_values
default RColorBrewer::brewer.pal(12, "Paired"); for use_type=2; color vector.
shape_values
default c(16, 17, 7, 8, 15, 18, 11, 10, 12, 13, 9, 3, 4, 0, 1, 2, 14); for use_type=2; shape vector, see ggplot2 tutorial for the shape meaning.
...
parameters pass to geom_point
function of ggplot2 package.
ggplot.
\donttest{ t1$plot_taxa_roles(roles_color_background = FALSE) }
subset_network()
Subset of the network.
trans_network$subset_network( node = NULL, edge = NULL, rm_single = TRUE, node_alledges = FALSE, return_igraph = TRUE )
node
default NULL; provide the node names that will be used in the sub-network.
edge
default NULL; provide the edge label or numbers that need to be remained. For the edge label, it should must be "+" or "-".
For the numbers, they should fall within the range of rows in res_edge_table
of the object.
rm_single
default TRUE; whether remove the nodes without any edge in the sub-network. So this function can also be used to remove the nodes withou any edge when node and edge are both NULL.
node_alledges
default FALSE; whether remain the nodes and edges that related to the nodes provided in node
parameter.
return_igraph
default TRUE; whether return the network with igraph format. If FALSE, return trans_network
object.
a new network
\donttest{ t1$subset_network(node = t1$res_node_table %>% base::subset(module == "M1") %>% rownames, rm_single = TRUE) # return a sub network that contains all nodes of module M1 }
cal_powerlaw()
Fit degrees to a power law distribution. First, perform a bootstrapping hypothesis test to determine whether degrees follow a power law distribution. If the distribution follows power law, then fit degrees to power law distribution and return the parameters.
trans_network$cal_powerlaw(...)
...
parameters pass to bootstrap_p function in poweRlaw package.
res_powerlaw_p
and res_powerlaw_fit
; see poweRlaw::bootstrap_p
function for the bootstrapping p value details;
see igraph::fit_power_law
function for the power law fit return details.
\donttest{ t1$cal_powerlaw() }
cal_sum_links()
This function is used to sum the links number from one taxa to another or in the same taxa, for example, at Phylum level. This is very useful to fast see how many nodes are connected between different taxa or within the taxa.
trans_network$cal_sum_links(taxa_level = "Phylum")
taxa_level
default "Phylum"; taxonomic rank.
res_sum_links_pos
and res_sum_links_neg
in object.
\donttest{ t1$cal_sum_links(taxa_level = "Phylum") }
plot_sum_links()
Plot the summed linkages among taxa.
trans_network$plot_sum_links( plot_pos = TRUE, plot_num = NULL, color_values = RColorBrewer::brewer.pal(8, "Dark2"), method = c("chorddiag", "circlize")[1], ... )
plot_pos
default TRUE; If TRUE, plot the summed positive linkages; If FALSE, plot the summed negative linkages.
plot_num
default NULL; number of taxa presented in the plot.
color_values
default RColorBrewer::brewer.pal(8, "Dark2"); colors palette for taxa.
method
default c("chorddiag", "circlize")[1]; chorddiag package <https://github.com/mattflor/chorddiag> or circlize package.
...
pass to chorddiag::chorddiag
function when method = "chorddiag"
or
circlize::chordDiagram
function when method = "circlize"
.
Note that for circlize::chordDiagram
function, keep.diagonal
, symmetric
and self.link
parameters have been fixed to fit the input data.
please see the invoked function.
\dontrun{ test1$plot_sum_links(method = "chorddiag", plot_pos = TRUE, plot_num = 10) test1$plot_sum_links(method = "circlize", transparency = 0.2, annotationTrackHeight = circlize::mm_h(c(5, 5))) }
random_network()
Generate random networks, compare them with the empirical network and get the p value of topological properties.
The generation of random graph is based on the erdos.renyi.game
function of igraph package.
The numbers of vertices and edges in the random graph are same with the empirical network stored in the object.
trans_network$random_network(runs = 100, output_sim = FALSE)
runs
default 100; simulation number of random network.
output_sim
default FALSE; whether output each simulated network result.
a data.frame with the following components:
Observed
Topological properties of empirical network
Mean_sim
Mean of properties of simulated networks
SD_sim
SD of properties of simulated networks
p_value
Significance, i.e. p values
When output_sim = TRUE
, the columns from the five to the last are each simulated result.
\dontrun{ t1$random_network(runs = 100) }
trans_comm()
Transform classifed features to community-like microtable object for further analysis, such as module-taxa table.
trans_network$trans_comm(use_col = "module", abundance = TRUE)
use_col
default "module"; which column to use as the 'community'; must be one of the name of res_node_table from function get_node_table
.
abundance
default TRUE; whether sum abundance of taxa. TRUE: sum the abundance for a taxon across all samples; FALSE: sum the frequency for a taxon across all samples.
a new microtable
class.
\donttest{ t2 <- t1$trans_comm(use_col = "module") }
print()
Print the trans_network object.
trans_network$print()
clone()
The objects of this class are cloneable with this method.
trans_network$clone(deep = FALSE)
deep
Whether to make a deep clone.
## ------------------------------------------------ ## Method `trans_network$new` ## ------------------------------------------------ data(dataset) # for correlation network t1 <- trans_network$new(dataset = dataset, cor_method = "pearson", taxa_level = "OTU", filter_thres = 0.0002) # for non-correlation network t1 <- trans_network$new(dataset = dataset, cor_method = NULL) ## ------------------------------------------------ ## Method `trans_network$cal_network` ## ------------------------------------------------ ## Not run: # for correlation network t1 <- trans_network$new(dataset = dataset, cor_method = "pearson", taxa_level = "OTU", filter_thres = 0.001) t1$cal_network(COR_p_thres = 0.05, COR_cut = 0.6) t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.003) t1$cal_network(network_method = "SpiecEasi", SpiecEasi_method = "mb") t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.005) t1$cal_network(network_method = "beemStatic") t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.001) t1$cal_network(network_method = "FlashWeave") ## End(Not run) ## ------------------------------------------------ ## Method `trans_network$cal_module` ## ------------------------------------------------ t1 <- trans_network$new(dataset = dataset, cor_method = "pearson", taxa_level = "OTU", filter_thres = 0.0002) t1$cal_network(COR_p_thres = 0.01, COR_cut = 0.6) t1$cal_module(method = "cluster_fast_greedy") ## ------------------------------------------------ ## Method `trans_network$save_network` ## ------------------------------------------------ ## Not run: t1$save_network(filepath = "network.gexf") ## End(Not run) ## ------------------------------------------------ ## Method `trans_network$cal_network_attr` ## ------------------------------------------------ t1$cal_network_attr() ## ------------------------------------------------ ## Method `trans_network$get_node_table` ## ------------------------------------------------ t1$get_node_table(node_roles = TRUE) ## ------------------------------------------------ ## Method `trans_network$get_edge_table` ## ------------------------------------------------ t1$get_edge_table() ## ------------------------------------------------ ## Method `trans_network$get_adjacency_matrix` ## ------------------------------------------------ t1$get_adjacency_matrix(attr = "weight") ## ------------------------------------------------ ## Method `trans_network$plot_network` ## ------------------------------------------------ t1$plot_network(method = "igraph", layout = layout_with_kk) t1$plot_network(method = "ggraph", node_color = "module") t1$plot_network(method = "networkD3", node_color = "module") ## ------------------------------------------------ ## Method `trans_network$cal_eigen` ## ------------------------------------------------ t1$cal_eigen() ## ------------------------------------------------ ## Method `trans_network$plot_taxa_roles` ## ------------------------------------------------ t1$plot_taxa_roles(roles_color_background = FALSE) ## ------------------------------------------------ ## Method `trans_network$subset_network` ## ------------------------------------------------ t1$subset_network(node = t1$res_node_table %>% base::subset(module == "M1") %>% rownames, rm_single = TRUE) # return a sub network that contains all nodes of module M1 ## ------------------------------------------------ ## Method `trans_network$cal_powerlaw` ## ------------------------------------------------ t1$cal_powerlaw() ## ------------------------------------------------ ## Method `trans_network$cal_sum_links` ## ------------------------------------------------ t1$cal_sum_links(taxa_level = "Phylum") ## ------------------------------------------------ ## Method `trans_network$plot_sum_links` ## ------------------------------------------------ ## Not run: test1$plot_sum_links(method = "chorddiag", plot_pos = TRUE, plot_num = 10) test1$plot_sum_links(method = "circlize", transparency = 0.2, annotationTrackHeight = circlize::mm_h(c(5, 5))) ## End(Not run) ## ------------------------------------------------ ## Method `trans_network$random_network` ## ------------------------------------------------ ## Not run: t1$random_network(runs = 100) ## End(Not run) ## ------------------------------------------------ ## Method `trans_network$trans_comm` ## ------------------------------------------------ t2 <- t1$trans_comm(use_col = "module")
## ------------------------------------------------ ## Method `trans_network$new` ## ------------------------------------------------ data(dataset) # for correlation network t1 <- trans_network$new(dataset = dataset, cor_method = "pearson", taxa_level = "OTU", filter_thres = 0.0002) # for non-correlation network t1 <- trans_network$new(dataset = dataset, cor_method = NULL) ## ------------------------------------------------ ## Method `trans_network$cal_network` ## ------------------------------------------------ ## Not run: # for correlation network t1 <- trans_network$new(dataset = dataset, cor_method = "pearson", taxa_level = "OTU", filter_thres = 0.001) t1$cal_network(COR_p_thres = 0.05, COR_cut = 0.6) t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.003) t1$cal_network(network_method = "SpiecEasi", SpiecEasi_method = "mb") t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.005) t1$cal_network(network_method = "beemStatic") t1 <- trans_network$new(dataset = dataset, cor_method = NULL, filter_thres = 0.001) t1$cal_network(network_method = "FlashWeave") ## End(Not run) ## ------------------------------------------------ ## Method `trans_network$cal_module` ## ------------------------------------------------ t1 <- trans_network$new(dataset = dataset, cor_method = "pearson", taxa_level = "OTU", filter_thres = 0.0002) t1$cal_network(COR_p_thres = 0.01, COR_cut = 0.6) t1$cal_module(method = "cluster_fast_greedy") ## ------------------------------------------------ ## Method `trans_network$save_network` ## ------------------------------------------------ ## Not run: t1$save_network(filepath = "network.gexf") ## End(Not run) ## ------------------------------------------------ ## Method `trans_network$cal_network_attr` ## ------------------------------------------------ t1$cal_network_attr() ## ------------------------------------------------ ## Method `trans_network$get_node_table` ## ------------------------------------------------ t1$get_node_table(node_roles = TRUE) ## ------------------------------------------------ ## Method `trans_network$get_edge_table` ## ------------------------------------------------ t1$get_edge_table() ## ------------------------------------------------ ## Method `trans_network$get_adjacency_matrix` ## ------------------------------------------------ t1$get_adjacency_matrix(attr = "weight") ## ------------------------------------------------ ## Method `trans_network$plot_network` ## ------------------------------------------------ t1$plot_network(method = "igraph", layout = layout_with_kk) t1$plot_network(method = "ggraph", node_color = "module") t1$plot_network(method = "networkD3", node_color = "module") ## ------------------------------------------------ ## Method `trans_network$cal_eigen` ## ------------------------------------------------ t1$cal_eigen() ## ------------------------------------------------ ## Method `trans_network$plot_taxa_roles` ## ------------------------------------------------ t1$plot_taxa_roles(roles_color_background = FALSE) ## ------------------------------------------------ ## Method `trans_network$subset_network` ## ------------------------------------------------ t1$subset_network(node = t1$res_node_table %>% base::subset(module == "M1") %>% rownames, rm_single = TRUE) # return a sub network that contains all nodes of module M1 ## ------------------------------------------------ ## Method `trans_network$cal_powerlaw` ## ------------------------------------------------ t1$cal_powerlaw() ## ------------------------------------------------ ## Method `trans_network$cal_sum_links` ## ------------------------------------------------ t1$cal_sum_links(taxa_level = "Phylum") ## ------------------------------------------------ ## Method `trans_network$plot_sum_links` ## ------------------------------------------------ ## Not run: test1$plot_sum_links(method = "chorddiag", plot_pos = TRUE, plot_num = 10) test1$plot_sum_links(method = "circlize", transparency = 0.2, annotationTrackHeight = circlize::mm_h(c(5, 5))) ## End(Not run) ## ------------------------------------------------ ## Method `trans_network$random_network` ## ------------------------------------------------ ## Not run: t1$random_network(runs = 100) ## End(Not run) ## ------------------------------------------------ ## Method `trans_network$trans_comm` ## ------------------------------------------------ t2 <- t1$trans_comm(use_col = "module")
Feature abundance normalization/transformation for a microtable object or data.frame object.
new()
Get a transposed abundance table if the input is microtable object. In the table, rows are samples, and columns are features. This can make the further operations same with the traditional ecological methods.
trans_norm$new(dataset = NULL)
dataset
the microtable
object or data.frame
object.
If it is data.frame
object, please make sure that rows are samples, and columns are features.
data_table, stored in the object.
library(microeco) data(dataset) t1 <- trans_norm$new(dataset = dataset)
norm()
Normalization/transformation methods.
trans_norm$norm( method = "rarefy", sample.size = NULL, rngseed = 123, replace = TRUE, pseudocount = 1, intersect.no = 10, ct.min = 1, condition = NULL, MARGIN = NULL, logbase = 2, ... )
method
default "rarefy"; See the following available options.
Methods for normalization:
"rarefy"
: classic rarefaction based on R sample function.
"SRS"
: scaling with ranked subsampling method based on the SRS package provided by Lukas Beule and Petr Karlovsky (2020) <doi:10.7717/peerj.9593>.
"clr"
: Centered log-ratio normalization <ISBN:978-0-412-28060-3> <doi: 10.3389/fmicb.2017.02224>.
It is defined:
where is the abundance of
th feature in sample
,
is the geometric mean of abundances for sample
.
A pseudocount need to be added to deal with the zero. For more information, please see the 'clr' method in
decostand
function of vegan package.
"rclr"
: Robust centered log-ratio normalization <doi:10.1128/msystems.00016-19>.
It is defined:
where is the abundance of
th feature in sample
,
is the geometric mean of abundances (> 0) for sample
.
In rclr, zero values are kept as zeroes, and not taken into account.
"GMPR"
: Geometric mean of pairwise ratios <doi: 10.7717/peerj.4600>.
For a given sample , the size factor
is defined:
where denotes all the features, and
denotes all the samples.
For sample
,
, where
is the feature abundances of sample
.
"CSS"
: Cumulative sum scaling normalization based on the metagenomeSeq
package <doi:10.1038/nmeth.2658>.
For a given sample , the scaling factor
is defined:
where is the
th quantile of sample
, that is, in sample
there are
features with counts smaller than
.
denotes the count (abundance) of feature i in sample
.
For
= 0.95
(feature number),
corresponds to the 95th percentile of the count distribution for sample
.
Normalized counts
, where
is an appropriately chosen normalization constant.
"TSS"
: Total sum scaling. Abundance is divided by the sequencing depth.
For a given sample , normalized counts is defined:
where is the counts of feature
in sample
, and
is the feature number of sample
.
"eBay"
: Empirical Bayes approach to normalization <10.1186/s12859-020-03552-z>.
The implemented method is not tree-related. In the output, the sum of each sample is 1.
"TMM"
: Trimmed mean of M-values method based on the normLibSizes
function of edgeR
package <doi: 10.1186/gb-2010-11-3-r25>.
"DESeq2"
: Median ratio of gene counts relative to geometric mean per gene based on the DESeq function of DESeq2
package <doi: 10.1186/s13059-014-0550-8>.
This option can invoke the trans_diff
class and extract the normalized data from the original result.
Note that either group
or formula
should be provided.
The scaling factor is defined:
where is the counts of feature
in sample
, and
is the total sample number.
"Wrench"
: Group-wise and sample-wise compositional bias factor <doi: 10.1186/s12864-018-5160-5>.
Note that condition parameter is necesary to be passed to condition
parameter in wrench
function of Wrench package.
As the input data must be microtable object, so the input condition parameter can be a column name of sample_table
.
The scaling factor is defined:
where represents the relative abundance (proportion) for feature
in sample
,
is the average proportion of feature
across the dataset,
represents a weight specific to each technique, and
is the feature number in sample.
"RLE"
: Relative log expression.
Methods based on decostand
function of vegan package:
"total"
: divide by margin total (default MARGIN = 1, i.e. rows - samples).
"max"
: divide by margin maximum (default MARGIN = 2, i.e. columns - features).
"normalize"
: make margin sum of squares equal to one (default MARGIN = 1).
"range"
: standardize values into range 0...1 (default MARGIN = 2). If all values are constant, they will be transformed to 0.
"standardize"
: scale x to zero mean and unit variance (default MARGIN = 2).
"pa"
: scale x to presence/absence scale (0/1).
"log"
: logarithmic transformation.
Other methods for transformation:
"AST"
: Arc sine square root transformation.
sample.size
default NULL; libray size for rarefaction when method = "rarefy" or "SRS". If not provided, use the minimum number across all samples.
For "SRS" method, this parameter is passed to Cmin
parameter of SRS
function of SRS package.
rngseed
default 123; random seed. Available when method = "rarefy" or "SRS".
replace
default TRUE; see sample
for the random sampling; Available when method = "rarefy"
.
pseudocount
default 1; add pseudocount for those features with 0 abundance when method = "clr"
.
intersect.no
default 10; the intersecting taxa number between paired sample for method = "GMPR"
.
ct.min
default 1; the minimum number of counts required to calculate ratios for method = "GMPR"
.
condition
default NULL; Only available when method = "Wrench"
.
This parameter is passed to the condition
parameter of wrench
function in Wrench package
It must be a column name of sample_table
or a vector with same length of samples.
MARGIN
default NULL; 1 = samples, and 2 = features of abundance table; only available when method comes from decostand
function of vegan package.
If MARGIN is NULL, use the default value in decostand function.
logbase
default 2; The logarithm base.
...
parameters pass to vegan::decostand
, or metagenomeSeq::cumNorm
when method = "CSS",
or edgeR::normLibSizes
when method = "TMM" or "RLE",
or trans_diff
class when method = "DESeq2",
or wrench
function of Wrench package when method = "Wrench".
new microtable object or data.frame object.
newdataset <- t1$norm(method = "clr") newdataset <- t1$norm(method = "log")
clone()
The objects of this class are cloneable with this method.
trans_norm$clone(deep = FALSE)
deep
Whether to make a deep clone.
## ------------------------------------------------ ## Method `trans_norm$new` ## ------------------------------------------------ library(microeco) data(dataset) t1 <- trans_norm$new(dataset = dataset) ## ------------------------------------------------ ## Method `trans_norm$norm` ## ------------------------------------------------ newdataset <- t1$norm(method = "clr") newdataset <- t1$norm(method = "log")
## ------------------------------------------------ ## Method `trans_norm$new` ## ------------------------------------------------ library(microeco) data(dataset) t1 <- trans_norm$new(dataset = dataset) ## ------------------------------------------------ ## Method `trans_norm$norm` ## ------------------------------------------------ newdataset <- t1$norm(method = "clr") newdataset <- t1$norm(method = "log")
trans_nullmodel
object for null model related analysis.This class is a wrapper for a series of null model related approaches, including the mantel correlogram analysis of phylogenetic signal, beta nearest taxon index (betaNTI), beta net relatedness index (betaNRI), NTI, NRI and RCbray (Raup–Crick Bray–Curtis) calculations. See <doi:10.1111/j.1600-0587.2010.06548.x; 10.1890/ES10-00117.1; 10.1038/ismej.2013.93; 10.1038/s41598-017-17736-w> for the algorithms and applications.
new()
trans_nullmodel$new( dataset = NULL, filter_thres = 0, taxa_number = NULL, group = NULL, select_group = NULL, env_cols = NULL, add_data = NULL, complete_na = FALSE )
dataset
the object of microtable
Class.
filter_thres
default 0; the relative abundance threshold.
taxa_number
default NULL; how many taxa the user want to keep, if provided, filter_thres parameter will be forcible invalid.
group
default NULL; which column name in sample_table is selected as the group for the following selection.
select_group
default NULL; one or more elements in group
, used to select samples.
env_cols
default NULL; number or name vector to select the environmental data in dataset$sample_table.
add_data
default NULL; provide environmental data table additionally.
complete_na
default FALSE; whether fill the NA in environmental data based on the method in mice package.
data_comm
and data_tree
in object.
data(dataset) data(env_data_16S) t1 <- trans_nullmodel$new(dataset, filter_thres = 0.0005, add_data = env_data_16S)
cal_mantel_corr()
Calculate mantel correlogram.
trans_nullmodel$cal_mantel_corr( use_env = NULL, break.pts = seq(0, 1, 0.02), cutoff = FALSE, ... )
use_env
default NULL; numeric or character vector to select env_data; if provide multiple variables or NULL, use PCA (principal component analysis) to reduce dimensionality.
break.pts
default seq(0, 1, 0.02); see break.pts parameter in mantel.correlog
of vegan
package.
cutoff
default FALSE; see cutoff parameter in mantel.correlog
.
...
parameters pass to mantel.correlog
function in vegan package.
res_mantel_corr in object.
\dontrun{ t1$cal_mantel_corr(use_env = "pH") }
plot_mantel_corr()
Plot mantel correlogram.
trans_nullmodel$plot_mantel_corr(point_shape = 22, point_size = 3)
point_shape
default 22; the number for selecting point shape type; see ggplot2
manual for the number meaning.
point_size
default 3; the point size.
ggplot.
\dontrun{ t1$plot_mantel_corr() }
cal_betampd()
Calculate betaMPD (mean pairwise distance). Same with picante::comdist
function, but faster.
trans_nullmodel$cal_betampd(abundance.weighted = TRUE)
abundance.weighted
default TRUE; whether use abundance-weighted method.
res_betampd in object.
\donttest{ t1$cal_betampd(abundance.weighted = TRUE) }
cal_betamntd()
Calculate betaMNTD (mean nearest taxon distance). Same with picante::comdistnt
function, but faster.
trans_nullmodel$cal_betamntd( abundance.weighted = TRUE, exclude.conspecifics = FALSE, use_iCAMP = FALSE, use_iCAMP_force = TRUE, iCAMP_tempdir = NULL, ... )
abundance.weighted
default TRUE; whether use abundance-weighted method.
exclude.conspecifics
default FALSE; see exclude.conspecifics
parameter in comdistnt
function of picante
package.
use_iCAMP
default FALSE; whether use bmntd.big
function of iCAMP
package to calculate betaMNTD.
This method can store the phylogenetic distance matrix on the disk to lower the memory spending and perform the calculation parallelly.
use_iCAMP_force
default FALSE; whether use bmntd.big
function of iCAMP
package automatically when the feature number is large.
iCAMP_tempdir
default NULL; the temporary directory used to place the large tree file; If NULL; use the system user tempdir.
...
paremeters pass to iCAMP::pdist.big
function.
res_betamntd in object.
\donttest{ t1$cal_betamntd(abundance.weighted = TRUE) }
cal_ses_betampd()
Calculate standardized effect size of betaMPD, i.e. beta net relatedness index (betaNRI).
trans_nullmodel$cal_ses_betampd( runs = 1000, null.model = c("taxa.labels", "richness", "frequency", "sample.pool", "phylogeny.pool", "independentswap", "trialswap")[1], abundance.weighted = TRUE, iterations = 1000 )
runs
default 1000; simulation runs.
null.model
default "taxa.labels"; The available options include "taxa.labels", "richness", "frequency", "sample.pool", "phylogeny.pool",
"independentswap"and "trialswap"; see null.model
parameter of ses.mntd
function in picante
package for the algorithm details.
abundance.weighted
default TRUE; whether use weighted abundance.
iterations
default 1000; iteration number for part null models to perform; see iterations parameter of picante::randomizeMatrix
function.
res_ses_betampd in object.
\dontrun{ # only run 50 times for the example; default 1000 t1$cal_ses_betampd(runs = 50, abundance.weighted = TRUE) }
cal_ses_betamntd()
Calculate standardized effect size of betaMNTD, i.e. beta nearest taxon index (betaNTI).
trans_nullmodel$cal_ses_betamntd( runs = 1000, null.model = c("taxa.labels", "richness", "frequency", "sample.pool", "phylogeny.pool", "independentswap", "trialswap")[1], abundance.weighted = TRUE, exclude.conspecifics = FALSE, use_iCAMP = FALSE, use_iCAMP_force = TRUE, iCAMP_tempdir = NULL, nworker = 2, iterations = 1000 )
runs
default 1000; simulation number of null model.
null.model
default "taxa.labels"; The available options include "taxa.labels", "richness", "frequency", "sample.pool", "phylogeny.pool",
"independentswap"and "trialswap"; see null.model
parameter of ses.mntd
function in picante
package for the algorithm details.
abundance.weighted
default TRUE; whether use abundance-weighted method.
exclude.conspecifics
default FALSE; see comdistnt
in picante package.
use_iCAMP
default FALSE; whether use bmntd.big function of iCAMP package to calculate betaMNTD. This method can store the phylogenetic distance matrix on the disk to lower the memory spending and perform the calculation parallelly.
use_iCAMP_force
default FALSE; whether to make use_iCAMP to be TRUE when the feature number is large.
iCAMP_tempdir
default NULL; the temporary directory used to place the large tree file; If NULL; use the system user tempdir.
nworker
default 2; the CPU thread number.
iterations
default 1000; iteration number for part null models to perform; see iterations parameter of picante::randomizeMatrix
function.
res_ses_betamntd in object.
\dontrun{ # only run 50 times for the example; default 1000 t1$cal_ses_betamntd(runs = 50, abundance.weighted = TRUE, exclude.conspecifics = FALSE) }
cal_rcbray()
Calculate Bray–Curtis-based Raup–Crick (RCbray) <doi: 10.1890/ES10-00117.1>.
trans_nullmodel$cal_rcbray( runs = 1000, verbose = TRUE, null.model = "independentswap" )
runs
default 1000; simulation runs.
verbose
default TRUE; whether show the calculation process message.
null.model
default "independentswap"; see more available options in randomizeMatrix
function of picante
package.
res_rcbray in object.
\dontrun{ # only run 50 times for the example; default 1000 t1$cal_rcbray(runs = 50) }
cal_process()
Infer the ecological processes according to ses.betaMNTD/ses.betaMPD and rcbray.
trans_nullmodel$cal_process(use_betamntd = TRUE, group = NULL)
use_betamntd
default TRUE; whether use ses.betaMNTD; if false, use ses.betaMPD.
group
default NULL; a column name in sample_table of microtable object. If provided, the analysis will be performed for each group instead of the whole.
res_process in object.
\dontrun{ t1$cal_process(use_betamntd = TRUE) }
cal_NRI()
Calculates Nearest Relative Index (NRI), equivalent to -1 times the standardized effect size of MPD.
trans_nullmodel$cal_NRI( null.model = "taxa.labels", abundance.weighted = FALSE, runs = 999, ... )
null.model
default "taxa.labels"; Null model to use; see null.model
parameter in ses.mpd
function of picante
package for available options.
abundance.weighted
default FALSE; Should mean nearest relative distances for each species be weighted by species abundance?
runs
default 999; Number of randomizations.
...
paremeters pass to ses.mpd function in picante package.
res_NRI in object, equivalent to -1 times ses.mpd.
\donttest{ # only run 50 times for the example; default 999 t1$cal_NRI(null.model = "taxa.labels", abundance.weighted = FALSE, runs = 50) }
cal_NTI()
Calculates Nearest Taxon Index (NTI), equivalent to -1 times the standardized effect size of MNTD.
trans_nullmodel$cal_NTI( null.model = "taxa.labels", abundance.weighted = FALSE, runs = 999, ... )
null.model
default "taxa.labels"; Null model to use; see null.model
parameter in ses.mntd
function of picante
package for available options.
abundance.weighted
default FALSE; Should mean nearest taxon distances for each species be weighted by species abundance?
runs
default 999; Number of randomizations.
...
paremeters pass to ses.mntd
function in picante
package.
res_NTI in object, equivalent to -1 times ses.mntd.
\donttest{ # only run 50 times for the example; default 999 t1$cal_NTI(null.model = "taxa.labels", abundance.weighted = TRUE, runs = 50) }
cal_Cscore()
Calculates the (normalised) mean number of checkerboard combinations (C-score) using C.score
function in bipartite
package.
trans_nullmodel$cal_Cscore(by_group = NULL, ...)
by_group
default NULL; one column name or number in sample_table; calculate C-score for different groups separately.
...
paremeters pass to bipartite::C.score
function.
vector.
\dontrun{ t1$cal_Cscore(normalise = FALSE) t1$cal_Cscore(by_group = "Group", normalise = FALSE) }
cal_NST()
Calculate normalized stochasticity ratio (NST) based on the NST
package.
trans_nullmodel$cal_NST(method = "tNST", group, ...)
method
default "tNST"; 'tNST'
or 'pNST'
. See the help document of tNST
or pNST
function in NST
package for more details.
group
a colname of sample_table
in microtable object;
the function can select the data from sample_table to generate a one-column (n x 1) matrix and
provide it to the group parameter of tNST
or pNST
function.
...
paremeters pass to NST::tNST
or NST::pNST
function; see the document of corresponding function for more details.
res_NST stored in the object.
\dontrun{ t1$cal_NST(group = "Group", dist.method = "bray", output.rand = TRUE, SES = TRUE) }
cal_NST_test()
Test the significance of NST difference between each pair of groups.
trans_nullmodel$cal_NST_test(method = "nst.boot", ...)
method
default "nst.boot"; "nst.boot" or "nst.panova"; see NST::nst.boot
function or NST::nst.panova
function for the details.
...
paremeters pass to NST::nst.boot when method = "nst.boot" or NST::nst.panova when method = "nst.panova".
list. See the Return part of NST::nst.boot
function or NST::nst.panova
function in NST package.
\dontrun{ t1$cal_NST_test() }
cal_NST_convert()
Convert NST paired long format table to symmetric matrix form.
trans_nullmodel$cal_NST_convert(column = 10)
column
default 10; which column is selected for the conversion. See the columns of res_NST$index.pair
stored in the object.
symmetric matrix.
\dontrun{ t1$cal_NST_convert(column = 10) }
clone()
The objects of this class are cloneable with this method.
trans_nullmodel$clone(deep = FALSE)
deep
Whether to make a deep clone.
## ------------------------------------------------ ## Method `trans_nullmodel$new` ## ------------------------------------------------ data(dataset) data(env_data_16S) t1 <- trans_nullmodel$new(dataset, filter_thres = 0.0005, add_data = env_data_16S) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_mantel_corr` ## ------------------------------------------------ ## Not run: t1$cal_mantel_corr(use_env = "pH") ## End(Not run) ## ------------------------------------------------ ## Method `trans_nullmodel$plot_mantel_corr` ## ------------------------------------------------ ## Not run: t1$plot_mantel_corr() ## End(Not run) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_betampd` ## ------------------------------------------------ t1$cal_betampd(abundance.weighted = TRUE) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_betamntd` ## ------------------------------------------------ t1$cal_betamntd(abundance.weighted = TRUE) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_ses_betampd` ## ------------------------------------------------ ## Not run: # only run 50 times for the example; default 1000 t1$cal_ses_betampd(runs = 50, abundance.weighted = TRUE) ## End(Not run) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_ses_betamntd` ## ------------------------------------------------ ## Not run: # only run 50 times for the example; default 1000 t1$cal_ses_betamntd(runs = 50, abundance.weighted = TRUE, exclude.conspecifics = FALSE) ## End(Not run) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_rcbray` ## ------------------------------------------------ ## Not run: # only run 50 times for the example; default 1000 t1$cal_rcbray(runs = 50) ## End(Not run) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_process` ## ------------------------------------------------ ## Not run: t1$cal_process(use_betamntd = TRUE) ## End(Not run) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_NRI` ## ------------------------------------------------ # only run 50 times for the example; default 999 t1$cal_NRI(null.model = "taxa.labels", abundance.weighted = FALSE, runs = 50) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_NTI` ## ------------------------------------------------ # only run 50 times for the example; default 999 t1$cal_NTI(null.model = "taxa.labels", abundance.weighted = TRUE, runs = 50) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_Cscore` ## ------------------------------------------------ ## Not run: t1$cal_Cscore(normalise = FALSE) t1$cal_Cscore(by_group = "Group", normalise = FALSE) ## End(Not run) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_NST` ## ------------------------------------------------ ## Not run: t1$cal_NST(group = "Group", dist.method = "bray", output.rand = TRUE, SES = TRUE) ## End(Not run) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_NST_test` ## ------------------------------------------------ ## Not run: t1$cal_NST_test() ## End(Not run) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_NST_convert` ## ------------------------------------------------ ## Not run: t1$cal_NST_convert(column = 10) ## End(Not run)
## ------------------------------------------------ ## Method `trans_nullmodel$new` ## ------------------------------------------------ data(dataset) data(env_data_16S) t1 <- trans_nullmodel$new(dataset, filter_thres = 0.0005, add_data = env_data_16S) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_mantel_corr` ## ------------------------------------------------ ## Not run: t1$cal_mantel_corr(use_env = "pH") ## End(Not run) ## ------------------------------------------------ ## Method `trans_nullmodel$plot_mantel_corr` ## ------------------------------------------------ ## Not run: t1$plot_mantel_corr() ## End(Not run) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_betampd` ## ------------------------------------------------ t1$cal_betampd(abundance.weighted = TRUE) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_betamntd` ## ------------------------------------------------ t1$cal_betamntd(abundance.weighted = TRUE) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_ses_betampd` ## ------------------------------------------------ ## Not run: # only run 50 times for the example; default 1000 t1$cal_ses_betampd(runs = 50, abundance.weighted = TRUE) ## End(Not run) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_ses_betamntd` ## ------------------------------------------------ ## Not run: # only run 50 times for the example; default 1000 t1$cal_ses_betamntd(runs = 50, abundance.weighted = TRUE, exclude.conspecifics = FALSE) ## End(Not run) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_rcbray` ## ------------------------------------------------ ## Not run: # only run 50 times for the example; default 1000 t1$cal_rcbray(runs = 50) ## End(Not run) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_process` ## ------------------------------------------------ ## Not run: t1$cal_process(use_betamntd = TRUE) ## End(Not run) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_NRI` ## ------------------------------------------------ # only run 50 times for the example; default 999 t1$cal_NRI(null.model = "taxa.labels", abundance.weighted = FALSE, runs = 50) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_NTI` ## ------------------------------------------------ # only run 50 times for the example; default 999 t1$cal_NTI(null.model = "taxa.labels", abundance.weighted = TRUE, runs = 50) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_Cscore` ## ------------------------------------------------ ## Not run: t1$cal_Cscore(normalise = FALSE) t1$cal_Cscore(by_group = "Group", normalise = FALSE) ## End(Not run) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_NST` ## ------------------------------------------------ ## Not run: t1$cal_NST(group = "Group", dist.method = "bray", output.rand = TRUE, SES = TRUE) ## End(Not run) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_NST_test` ## ------------------------------------------------ ## Not run: t1$cal_NST_test() ## End(Not run) ## ------------------------------------------------ ## Method `trans_nullmodel$cal_NST_convert` ## ------------------------------------------------ ## Not run: t1$cal_NST_convert(column = 10) ## End(Not run)
trans_venn
object for the Venn diagram, petal plot and UpSet plot.This class is a wrapper for a series of intersection analysis related methods, including 2- to 5-way venn diagram, more than 5-way petal or UpSet plot and intersection transformations based on David et al. (2012) <doi:10.1128/AEM.01459-12>.
new()
trans_venn$new(dataset, ratio = NULL, name_joint = "&")
dataset
the object of microtable
class or a matrix-like table (data.frame or matrix object).
If dataset is a matrix-like table, features must be rows.
ratio
default NULL; NULL, "numratio" or "seqratio"; "numratio": calculate the percentage of feature number; "seqratio": calculate the percentage of feature abundance; NULL: no additional percentage.
name_joint
default "&"; the joint mark for generating multi-sample names.
data_details
and data_summary
stored in the object.
\donttest{ data(dataset) t1 <- dataset$merge_samples("Group") t1 <- trans_venn$new(dataset = t1, ratio = "numratio") }
plot_venn()
Plot venn diagram.
trans_venn$plot_venn( color_circle = RColorBrewer::brewer.pal(8, "Dark2"), fill_color = TRUE, text_size = 4.5, text_name_size = 6, text_name_position = NULL, alpha = 0.3, linesize = 1.1, petal_plot = FALSE, petal_color = "#BEAED4", petal_color_center = "#BEBADA", petal_a = 4, petal_r = 1, petal_use_lim = c(-12, 12), petal_center_size = 40, petal_move_xy = 4, petal_move_k = 2.3, petal_move_k_count = 1.3, petal_text_move = 40, other_text_show = NULL, other_text_position = c(2, 2), other_text_size = 5 )
color_circle
default RColorBrewer::brewer.pal(8, "Dark2")
; color pallete.
fill_color
default TRUE; whether fill the area color.
text_size
default 4.5; text size in plot.
text_name_size
default 6; name size in plot.
text_name_position
default NULL; name position in plot.
alpha
default .3; alpha for transparency.
linesize
default 1.1; cycle line size.
petal_plot
default FALSE; whether use petal plot.
petal_color
default "#BEAED4"; color of the petals; If petal_color only has one color value, all the petals will be assigned with this color value. If petal_color has multiple colors, and the number of color values is smaller than the petal number, the function can append more colors automatically with the color interpolation.
petal_color_center
default "#BEBADA"; color of the center in the petal plot.
petal_a
default 4; the length of the ellipse.
petal_r
default 1; scaling up the size of the ellipse.
petal_use_lim
default c(-12, 12); the width of the plot.
petal_center_size
default 40; petal center circle size.
petal_move_xy
default 4; the distance of text to circle.
petal_move_k
default 2.3; the distance of title to circle.
petal_move_k_count
default 1.3; the distance of data text to circle.
petal_text_move
default 40; the distance between two data text.
other_text_show
default NULL; other characters used to show in the plot.
other_text_position
default c(1, 1); the text position for text in other_text_show
.
other_text_size
default 5; the text size for text in other_text_show
.
ggplot.
\donttest{ t1$plot_venn() }
plot_bar()
Plot the intersections using histogram, i.e. UpSet plot. Especially useful when samples > 5.
trans_venn$plot_bar( left_plot = TRUE, sort_samples = FALSE, up_y_title = "Intersection size", up_y_title_size = 15, up_y_text_size = 8, up_bar_fill = "grey70", up_bar_width = 0.9, bottom_y_text_size = 12, bottom_height = 1, bottom_point_size = 3, bottom_point_color = "black", bottom_background_fill = "grey95", bottom_background_alpha = 1, bottom_line_width = 0.5, bottom_line_colour = "black", left_width = 0.3, left_bar_fill = "grey70", left_bar_alpha = 1, left_bar_width = 0.9, left_x_text_size = 10, left_background_fill = "white", left_background_alpha = 1 )
left_plot
default TRUE; whether add the left bar plot to show the feature number of each sample.
sort_samples
default FALSE; TRUE
is used to sort samples according to the number of features in each sample.
FALSE
means the sample order is same with that in sample_table of the raw dataset.
up_y_title
default "Intersection set"; y axis title of upper plot.
up_y_title_size
default 15; y axis title size of upper plot.
up_y_text_size
default 4; y axis text size of upper plot.
up_bar_fill
default "grey70"; bar fill color of upper plot.
up_bar_width
default 0.9; bar width of upper plot.
bottom_y_text_size
default 12; y axis text size, i.e. sample name size, of bottom sample plot.
bottom_height
default 1; bottom plot height relative to the upper bar plot. 1 represents the height of bottom plot is same with the upper bar plot.
bottom_point_size
default 3; point size of bottom plot.
bottom_point_color
default "black"; point color of bottom plot.
bottom_background_fill
default "grey95"; fill color for the striped background in the bottom sample plot. If the parameter length is 1, use "white" to distinguish the color stripes. If the parameter length is greater than 1, use all provided colors.
bottom_background_alpha
default 1; the color transparency for the parameter bottom_background_fill
.
bottom_line_width
default 0.5; the line width in the bottom plot.
bottom_line_colour
default "black"; the line color in the bottom plot.
left_width
default 0.3; left bar plot width relative to the right bottom plot.
left_bar_fill
default "grey70"; fill color for the left bar plot presenting feature number.
left_bar_alpha
default 1; the color transparency for the parameter left_bar_fill
.
left_bar_width
default 0.9; bar width of left plot.
left_x_text_size
default 10; x axis text size of the left bar plot.
left_background_fill
default "white"; fill color for the striped background in the left plot. If the parameter length is 1, use "white" to distinguish the color stripes. If the parameter length is greater than 1, use all provided colors.
left_background_alpha
default 1; the color transparency for the parameter left_background_fill
.
a ggplot2 object.
\donttest{ t2 <- t1$plot_bar() }
trans_comm()
Transform intersection result to community-like microtable object for further composition analysis.
trans_venn$trans_comm(use_frequency = TRUE)
use_frequency
default TRUE; whether only use OTUs occurrence frequency, i.e. presence/absence data; if FALSE, use abundance data.
a new microtable
class.
\donttest{ t2 <- t1$trans_comm(use_frequency = TRUE) }
print()
Print the trans_venn object.
trans_venn$print()
clone()
The objects of this class are cloneable with this method.
trans_venn$clone(deep = FALSE)
deep
Whether to make a deep clone.
## ------------------------------------------------ ## Method `trans_venn$new` ## ------------------------------------------------ data(dataset) t1 <- dataset$merge_samples("Group") t1 <- trans_venn$new(dataset = t1, ratio = "numratio") ## ------------------------------------------------ ## Method `trans_venn$plot_venn` ## ------------------------------------------------ t1$plot_venn() ## ------------------------------------------------ ## Method `trans_venn$plot_bar` ## ------------------------------------------------ t2 <- t1$plot_bar() ## ------------------------------------------------ ## Method `trans_venn$trans_comm` ## ------------------------------------------------ t2 <- t1$trans_comm(use_frequency = TRUE)
## ------------------------------------------------ ## Method `trans_venn$new` ## ------------------------------------------------ data(dataset) t1 <- dataset$merge_samples("Group") t1 <- trans_venn$new(dataset = t1, ratio = "numratio") ## ------------------------------------------------ ## Method `trans_venn$plot_venn` ## ------------------------------------------------ t1$plot_venn() ## ------------------------------------------------ ## Method `trans_venn$plot_bar` ## ------------------------------------------------ t2 <- t1$plot_bar() ## ------------------------------------------------ ## Method `trans_venn$trans_comm` ## ------------------------------------------------ t2 <- t1$trans_comm(use_frequency = TRUE)