Title: | Transform Files to 'microtable' Object with 'microeco' Package |
---|---|
Description: | Transform output files of some tools to the 'microtable' object of 'microtable' class in 'microeco' package. The 'microtable' class is the basic class in 'microeco' package and is necessary for the downstream microbial community data analysis. |
Authors: | Chi Liu [aut, cre] |
Maintainer: | Chi Liu <[email protected]> |
License: | GPL-3 |
Version: | 0.9.2 |
Built: | 2025-01-04 04:26:22 UTC |
Source: | https://github.com/chiliubio/file2meco |
Replace the names use match table
check_match_table(match_table = NULL, abund_new = NULL)
check_match_table(match_table = NULL, abund_new = NULL)
match_table |
default NULL; character or data.frame; matching table used. |
abund_new |
default NULL; data.frame; the abundance table used. |
new abundance table.
Read sample table
check_sample_table(sample_table = NULL)
check_sample_table(sample_table = NULL)
sample_table |
default NULL; character or data.frame; matching table used. |
sample information table.
The CHOCOPhlAn_taxonomy data is used for the parsing the 'HUMAaN' metagenomic results and add the taxonomy hierarchical information to the 'tax_table'.
data(CHOCOPhlAn_taxonomy)
data(CHOCOPhlAn_taxonomy)
For the detailed tutorial on the file2meco package, please follow the tutorial link in the github repository (https://github.com/ChiLiubio/file2meco)
Please open the help document by using help
function or by clicking the following links collected:qiime1meco
qiime2meco
humann2meco
mpa2meco
ncyc2meco
phyloseq2meco
meco2phyloseq
vs2meco
tse2meco
To report bugs or discuss questions, please use Github Issues (https://github.com/ChiLiubio/file2meco/issues). Before creating a new issue, please read the guideline (https://chiliubio.github.io/microeco_tutorial/notes.html#github-issues).
To cite file2meco package in publications, please run the following command to get the reference: citation("file2meco")
Reference:
Liu, C., Li, X., Mansoldo, F.R.P., An, J., Kou, Y., Zhang, X., Wang, J., Zeng, J., Vermelho, A.B., Yao, M., 2022.
Microbial habitat specificity largely affects microbial co-occurrence patterns and functional profiles in wetland soils. Geoderma 418, 115866.
Transform 'HUMAnN' metagenomic results to microtable object, reference: Franzosa et al. (2018) <doi:10.1038/s41592-018-0176-y>.
humann2meco( feature_table, db = c("MetaCyc", "KEGG", "gene")[1], sample_table = NULL, match_table = NULL, ... )
humann2meco( feature_table, db = c("MetaCyc", "KEGG", "gene")[1], sample_table = NULL, match_table = NULL, ... )
feature_table |
file path of 'HUMAnN' output abundance table; Please see the example. |
db |
default "MetaCyc"; one of "MetaCyc", "KEGG" or "gene"; "MetaCyc" or "KEGG" means the input feature table is pathway abundance. "gene" represents the abundance of genes, such as 'eggNOG', 'KO' and 'EC'. When using "gene", the generated tax_table has only taxonomic lineages and gene name, no higher functional levels. |
sample_table |
default NULL; sample metadata table; If provided, must be one of the several types of formats: |
match_table |
default NULL; a two column table used to replace the sample names in feature table; Must be two columns without column names;
The first column must be raw sample names same with those in feature table,
the second column must be new sample names same with the rownames in sample_table; Please also see the example files.
If provided, must be one of the several types of formats: |
... |
parameter passed to |
microtable
object.
library(file2meco) library(microeco) library(magrittr) sample_file_path <- system.file("extdata", "example_metagenome_sample_info.tsv", package="file2meco") match_file_path <- system.file("extdata", "example_metagenome_match_table.tsv", package="file2meco") # MetaCyc pathway examples # use the raw data files stored inside the package for MetaCyc pathway database based analysis abund_file_path <- system.file("extdata", "example_HUMAnN_MetaCyc_abund.tsv", package="file2meco") # the default db is "MetaCyc" humann2meco(abund_file_path, db = "MetaCyc") humann2meco(abund_file_path, db = "MetaCyc", sample_table = sample_file_path, match_table = match_file_path) test <- humann2meco(abund_file_path, db = "MetaCyc", sample_table = sample_file_path, match_table = match_file_path) test$tidy_dataset() # rel = FALSE sum original abundance instead of relative abundance test$cal_abund(select_cols = 1:3, rel = FALSE) test$taxa_abund$Superclass1 %<>% .[!grepl("unclass", rownames(.)), ] # use_percentage = FALSE disable percentage for relative abundance test1 <- trans_abund$new(test, taxrank = "Superclass1", ntaxa = 10, use_percentage = FALSE) # reassign ylab title instead of default 'Relative Abundance' test1$ylabname <- "Abundance (RPK)" # bar_full = FALSE show original abundance instead of normalized 0-1 test1$plot_bar(facet = "Group", bar_full = FALSE) # select both function and taxa test$cal_abund(select_cols = c("Superclass1", "Phylum", "Genus"), rel = TRUE) test1 <- trans_abund$new(test, taxrank = "Phylum", ntaxa = 10, delete_taxonomy_lineage = TRUE) test1$plot_bar(facet = "Group") test$taxa_abund$Phylum %<>% .[!grepl("unclass", rownames(.)), ] test1 <- trans_abund$new(test, taxrank = "Phylum", ntaxa = 10, delete_taxonomy_lineage = FALSE) test1$plot_bar(facet = "Group") # functional biomarker test$cal_abund(select_cols = 1:3, rel = TRUE) test$taxa_abund$Superclass1 %<>% .[!grepl("unclass", rownames(.)), ] test$taxa_abund$Superclass2 %<>% .[!grepl("unclass", rownames(.)), ] test$taxa_abund$pathway %<>% .[!grepl("unclass", rownames(.)), ] test1 <- trans_diff$new(test, method = "lefse", group = "Group") test1$plot_diff_bar(use_number = 1:20) # taxa biomarker test$cal_abund(select_cols = 4:9, rel = TRUE) test$taxa_abund$Phylum %<>% .[!grepl("unclass", rownames(.)), ] test1 <- trans_diff$new(test, method = "lefse", group = "Group", p_adjust_method = "none") test1$plot_diff_bar(threshold = 2) ############################################################# # KEGG pathway examples abund_file_path <- system.file("extdata", "example_HUMAnN_KEGG_abund.tsv", package="file2meco") humann2meco(abund_file_path, db = "KEGG") test <- humann2meco(abund_file_path, db = "KEGG", sample_table = sample_file_path, match_table = match_file_path) test$tax_table %<>% subset(Level.1 != "unclassified") test$tidy_dataset() test$cal_abund(select_cols = 1:3, rel = FALSE) # use_percentage = FALSE disable percentage for relative abundance test1 <- trans_abund$new(test, taxrank = "Level.2", ntaxa = 10, use_percentage = FALSE) # or use ggplot2::ylab to change ylab title test1$ylabname <- "Abundance (RPK)" test1$plot_bar(facet = "Group", bar_full = FALSE) # select both function and taxa test$cal_abund(select_cols = c("Level.1", "Phylum", "Genus"), rel = TRUE) test1 <- trans_abund$new(test, taxrank = "Phylum", ntaxa = 10, delete_taxonomy_lineage = FALSE) test1$plot_bar(facet = "Group") # functional biomarker test$cal_abund(select_cols = 1:3, rel = TRUE) test1 <- trans_diff$new(test, method = "lefse", group = "Group") test1$plot_diff_bar(threshold = 3) # taxa biomarker test$cal_abund(select_cols = 4:9, rel = TRUE) test1 <- trans_diff$new(test, method = "lefse", group = "Group", p_adjust_method = "none") test1$plot_diff_bar(threshold = 2)
library(file2meco) library(microeco) library(magrittr) sample_file_path <- system.file("extdata", "example_metagenome_sample_info.tsv", package="file2meco") match_file_path <- system.file("extdata", "example_metagenome_match_table.tsv", package="file2meco") # MetaCyc pathway examples # use the raw data files stored inside the package for MetaCyc pathway database based analysis abund_file_path <- system.file("extdata", "example_HUMAnN_MetaCyc_abund.tsv", package="file2meco") # the default db is "MetaCyc" humann2meco(abund_file_path, db = "MetaCyc") humann2meco(abund_file_path, db = "MetaCyc", sample_table = sample_file_path, match_table = match_file_path) test <- humann2meco(abund_file_path, db = "MetaCyc", sample_table = sample_file_path, match_table = match_file_path) test$tidy_dataset() # rel = FALSE sum original abundance instead of relative abundance test$cal_abund(select_cols = 1:3, rel = FALSE) test$taxa_abund$Superclass1 %<>% .[!grepl("unclass", rownames(.)), ] # use_percentage = FALSE disable percentage for relative abundance test1 <- trans_abund$new(test, taxrank = "Superclass1", ntaxa = 10, use_percentage = FALSE) # reassign ylab title instead of default 'Relative Abundance' test1$ylabname <- "Abundance (RPK)" # bar_full = FALSE show original abundance instead of normalized 0-1 test1$plot_bar(facet = "Group", bar_full = FALSE) # select both function and taxa test$cal_abund(select_cols = c("Superclass1", "Phylum", "Genus"), rel = TRUE) test1 <- trans_abund$new(test, taxrank = "Phylum", ntaxa = 10, delete_taxonomy_lineage = TRUE) test1$plot_bar(facet = "Group") test$taxa_abund$Phylum %<>% .[!grepl("unclass", rownames(.)), ] test1 <- trans_abund$new(test, taxrank = "Phylum", ntaxa = 10, delete_taxonomy_lineage = FALSE) test1$plot_bar(facet = "Group") # functional biomarker test$cal_abund(select_cols = 1:3, rel = TRUE) test$taxa_abund$Superclass1 %<>% .[!grepl("unclass", rownames(.)), ] test$taxa_abund$Superclass2 %<>% .[!grepl("unclass", rownames(.)), ] test$taxa_abund$pathway %<>% .[!grepl("unclass", rownames(.)), ] test1 <- trans_diff$new(test, method = "lefse", group = "Group") test1$plot_diff_bar(use_number = 1:20) # taxa biomarker test$cal_abund(select_cols = 4:9, rel = TRUE) test$taxa_abund$Phylum %<>% .[!grepl("unclass", rownames(.)), ] test1 <- trans_diff$new(test, method = "lefse", group = "Group", p_adjust_method = "none") test1$plot_diff_bar(threshold = 2) ############################################################# # KEGG pathway examples abund_file_path <- system.file("extdata", "example_HUMAnN_KEGG_abund.tsv", package="file2meco") humann2meco(abund_file_path, db = "KEGG") test <- humann2meco(abund_file_path, db = "KEGG", sample_table = sample_file_path, match_table = match_file_path) test$tax_table %<>% subset(Level.1 != "unclassified") test$tidy_dataset() test$cal_abund(select_cols = 1:3, rel = FALSE) # use_percentage = FALSE disable percentage for relative abundance test1 <- trans_abund$new(test, taxrank = "Level.2", ntaxa = 10, use_percentage = FALSE) # or use ggplot2::ylab to change ylab title test1$ylabname <- "Abundance (RPK)" test1$plot_bar(facet = "Group", bar_full = FALSE) # select both function and taxa test$cal_abund(select_cols = c("Level.1", "Phylum", "Genus"), rel = TRUE) test1 <- trans_abund$new(test, taxrank = "Phylum", ntaxa = 10, delete_taxonomy_lineage = FALSE) test1$plot_bar(facet = "Group") # functional biomarker test$cal_abund(select_cols = 1:3, rel = TRUE) test1 <- trans_diff$new(test, method = "lefse", group = "Group") test1$plot_diff_bar(threshold = 3) # taxa biomarker test$cal_abund(select_cols = 4:9, rel = TRUE) test1 <- trans_diff$new(test, method = "lefse", group = "Group", p_adjust_method = "none") test1$plot_diff_bar(threshold = 2)
Transform 'microtable' object of 'microeco' package to the 'phyloseq' object of 'phyloseq' package <doi:10.1371/journal.pone.0061217>.
meco2phyloseq(meco)
meco2phyloseq(meco)
meco |
a microtable object. |
phyloseq object.
## Not run: library(microeco) data("dataset") meco2phyloseq(dataset) ## End(Not run)
## Not run: library(microeco) data("dataset") meco2phyloseq(dataset) ## End(Not run)
Transform 'microtable' object of 'microeco' package to the 'TreeSummarizedExperiment' object of 'TreeSummarizedExperiment' package <doi:10.12688/f1000research.26669.2>.
meco2tse(meco, ...)
meco2tse(meco, ...)
meco |
a microtable object. |
... |
parameter passed to |
TreeSummarizedExperiment object.
## Not run: library(microeco) data("dataset") meco2tse(dataset) ## End(Not run)
## Not run: library(microeco) data("dataset") meco2tse(dataset) ## End(Not run)
The MetaCyc_pathway_map data is a manually curated hierarchical structure data of 'MetaCyc' pathways. It is used for parsing the 'HUMAaN' metagenomic abundance table associated with 'MetaCyc' database. Currently, only superclass 1, 2 and the pathway are used in this data. Some metabolic pathways may have multiple classification informations at specific levels, which are connected here with the symbol "&&". Therefore, when filtering in this table with the name of a pathway, please use regular expressions instead of direct filtering operations.
data(MetaCyc_pathway_map)
data(MetaCyc_pathway_map)
Get the website for a 'MetaCyc' pathway name
metacyc_pathway_website(pathway = NULL)
metacyc_pathway_website(pathway = NULL)
pathway |
default NULL; character vector; one or more MetaCyc pathway names. |
character vector.
metacyc_pathway_website("FOLSYN-PWY")
metacyc_pathway_website("FOLSYN-PWY")
Transform the classification results of mpa (MetaPhlAn) format to microtable object, such as MetaPhlAn and Kraken2/Bracken results. Kraken2/Bracken results can be obtained by merge_metaphlan_tables.py from MetaPhlAn or combine_mpa.py from KrakenTools (https://ccb.jhu.edu/software/krakentools/). The algorithm of Kraken2 determines that the abundance of a taxon is not equal to the sum of abundances of taxa in its subordinate lineage. So the default tables in taxa_abund of return microtable object are extracted from the abundances of raw file. It is totally different with the return taxa_abund of cal_abund function, which sums the abundances of taxa at different taxonomic levels based on the taxonomic table and the otu_table (i.e., taxa abundance table at a specified level, e.g., 's__').
mpa2meco( feature_table, sample_table = NULL, match_table = NULL, use_level = "s__", rel = FALSE, sel_same = 1, sep = "\t", ... )
mpa2meco( feature_table, sample_table = NULL, match_table = NULL, use_level = "s__", rel = FALSE, sel_same = 1, sep = "\t", ... )
feature_table |
'mpa' format abundance table, see the example. |
sample_table |
default NULL; sample metadata table; If provided, must be one of the several types of formats:
1) comma seperated file with the suffix csv or tab seperated file with suffix tsv/txt;
2) Excel type file with the suffix xlsx or xls; require |
match_table |
default NULL; a two column table used to replace the sample names in abundance table; Must be two columns without column names; The first column must be raw sample names same with those in feature table, the second column must be new sample names same with the rownames in sample_table; Please also see the example files. |
use_level |
default "s__"; the prefix parsed for the otu_table and tax_table; must be one of 'd__', 'k__', 'p__', 'c__', 'o__', 'f__', 'g__' and 's__'. |
rel |
default FALSE; Whether convert the original abundance to relative abundance in generated taxa_abund list. If TRUE, all the data.frame objects in taxa_abund list have relative abundance (0-1). |
sel_same |
default 1; How to select the taxonomic information in |
sep |
default "\t"; The separator in provided |
... |
parameter passed to microtable$new function of microeco package, such as auto_tidy parameter. |
microtable object.
library(microeco) library(file2meco) library(magrittr) # use Kraken2 file stored inside the package abund_file_path <- system.file("extdata", "example_kraken2_merge.txt", package="file2meco") mpa2meco(abund_file_path) # add sample information table sample_file_path <- system.file("extdata", "example_metagenome_sample_info.tsv", package="file2meco") # sample names are different between abund_file_path and sample_file_path; # use a matching table to adjust them match_file_path <- system.file("extdata", "example_metagenome_match_table.tsv", package="file2meco") test <- mpa2meco(abund_file_path, sample_table = sample_file_path, match_table = match_file_path, use_level = "s__", rel = TRUE) # make the taxonomy standard for the following analysis test$tax_table %<>% tidy_taxonomy test$tidy_dataset() # calculate taxa_abund with specified level instead of raw kraken results test1 <- clone(test) test1$cal_abund(rel = TRUE) identical(test$taxa_abund$Kingdom, test1$taxa_abund$Kingdom)
library(microeco) library(file2meco) library(magrittr) # use Kraken2 file stored inside the package abund_file_path <- system.file("extdata", "example_kraken2_merge.txt", package="file2meco") mpa2meco(abund_file_path) # add sample information table sample_file_path <- system.file("extdata", "example_metagenome_sample_info.tsv", package="file2meco") # sample names are different between abund_file_path and sample_file_path; # use a matching table to adjust them match_file_path <- system.file("extdata", "example_metagenome_match_table.tsv", package="file2meco") test <- mpa2meco(abund_file_path, sample_table = sample_file_path, match_table = match_file_path, use_level = "s__", rel = TRUE) # make the taxonomy standard for the following analysis test$tax_table %<>% tidy_taxonomy test$tidy_dataset() # calculate taxa_abund with specified level instead of raw kraken results test1 <- clone(test) test1$cal_abund(rel = TRUE) identical(test$taxa_abund$Kingdom, test1$taxa_abund$Kingdom)
The ncyc_map data is used for the parsing the 'NCycDB' metagenomic results and add the N cycle pathway information to the 'tax_table' of 'microtable' object.
data(ncyc_map)
data(ncyc_map)
Transform 'NCycDB' or 'PCycDB' metagenomic abundance to microtable object. The function can identify the mapping database according to the gene names of input feature abundance table. Reference: Qichao et al. (2019) <doi: 10.1093/bioinformatics/bty741> and Zeng et al. (2022) <doi: 10.1186/s40168-022-01292-1>.
ncyc2meco(feature_table, sample_table = NULL, match_table = NULL, ...)
ncyc2meco(feature_table, sample_table = NULL, match_table = NULL, ...)
feature_table |
'NCycDB' or 'PCycDB' output abundance table, see the example file. |
sample_table |
default NULL; sample metadata table; If provided, must be one of the several types of formats:
1) comma seperated file with the suffix csv or tab seperated file with suffix tsv/txt;
2) Excel type file with the suffix xlsx or xls; require |
match_table |
default NULL; a two column table used to replace the sample names in abundance table; Must be two columns without column names; The first column must be raw sample names same with those in feature table, the second column must be new sample names same with the rownames in sample_table; Please also see the example files. A file path must be tab or comma seperated file, e.g. a file with suffix "tsv" or "csv". |
... |
parameter passed to microtable$new function of microeco package, such as auto_tidy parameter. |
microtable object.
# NCycDB abund_file_path <- system.file("extdata", "example_Ncyc_table.tsv", package="file2meco") sample_file_path <- system.file("extdata", "example_metagenome_sample_info.tsv", package="file2meco") match_file_path <- system.file("extdata", "example_metagenome_match_table.tsv", package="file2meco") library(microeco) library(file2meco) library(magrittr) ncyc2meco(abund_file_path) test <- ncyc2meco(abund_file_path, sample_table = sample_file_path, match_table = match_file_path) test$tidy_dataset() # use split_group = TRUE to calculate the pathway abundance with multipe map correspondance test$cal_abund(select_cols = 1, rel = TRUE, split_group = TRUE, split_column = "Pathway") test$taxa_abund$Pathway %<>% .[!grepl("unclass", rownames(.)), ] test1 <- trans_abund$new(test, taxrank = "Pathway") test1$plot_bar(bar_full = FALSE) # for gene abundance, no splitting on the Pathway test$cal_abund(select_cols = 1:2, rel = TRUE, split_group = FALSE) test$taxa_abund$Gene %<>% .[!grepl("unclass", rownames(.)), ] test1 <- trans_abund$new(test, taxrank = "Gene") test1$plot_bar(bar_full = FALSE) # PCycDB abund_file_path <- system.file("extdata", "example_Pcyc_table.tsv", package="file2meco") test <- ncyc2meco(abund_file_path) test$tidy_dataset() # show pathway abundance test$cal_abund(select_cols = 1, rel = TRUE, split_group = TRUE, split_by = "&&", split_column = "Pathway") test$taxa_abund$Pathway %<>% .[!grepl("unclass|Others", rownames(.)), ] test1 <- trans_abund$new(test, taxrank = "Pathway") test1$plot_bar(bar_full = FALSE) # show gene abundance test$cal_abund(select_cols = 2, rel = TRUE, split_group = FALSE) test$taxa_abund$Gene %<>% .[!grepl("unclass", rownames(.)), ] test1 <- trans_abund$new(test, taxrank = "Gene") test1$plot_bar(bar_full = FALSE)
# NCycDB abund_file_path <- system.file("extdata", "example_Ncyc_table.tsv", package="file2meco") sample_file_path <- system.file("extdata", "example_metagenome_sample_info.tsv", package="file2meco") match_file_path <- system.file("extdata", "example_metagenome_match_table.tsv", package="file2meco") library(microeco) library(file2meco) library(magrittr) ncyc2meco(abund_file_path) test <- ncyc2meco(abund_file_path, sample_table = sample_file_path, match_table = match_file_path) test$tidy_dataset() # use split_group = TRUE to calculate the pathway abundance with multipe map correspondance test$cal_abund(select_cols = 1, rel = TRUE, split_group = TRUE, split_column = "Pathway") test$taxa_abund$Pathway %<>% .[!grepl("unclass", rownames(.)), ] test1 <- trans_abund$new(test, taxrank = "Pathway") test1$plot_bar(bar_full = FALSE) # for gene abundance, no splitting on the Pathway test$cal_abund(select_cols = 1:2, rel = TRUE, split_group = FALSE) test$taxa_abund$Gene %<>% .[!grepl("unclass", rownames(.)), ] test1 <- trans_abund$new(test, taxrank = "Gene") test1$plot_bar(bar_full = FALSE) # PCycDB abund_file_path <- system.file("extdata", "example_Pcyc_table.tsv", package="file2meco") test <- ncyc2meco(abund_file_path) test$tidy_dataset() # show pathway abundance test$cal_abund(select_cols = 1, rel = TRUE, split_group = TRUE, split_by = "&&", split_column = "Pathway") test$taxa_abund$Pathway %<>% .[!grepl("unclass|Others", rownames(.)), ] test1 <- trans_abund$new(test, taxrank = "Pathway") test1$plot_bar(bar_full = FALSE) # show gene abundance test$cal_abund(select_cols = 2, rel = TRUE, split_group = FALSE) test$taxa_abund$Gene %<>% .[!grepl("unclass", rownames(.)), ] test1 <- trans_abund$new(test, taxrank = "Gene") test1$plot_bar(bar_full = FALSE)
The pcyc_map data is used for the parsing the 'PCycDB' metagenomic results and add the P cycle pathway information to the 'tax_table' of 'microtable' object.
data(pcyc_map)
data(pcyc_map)
Transform the 'phyloseq' object of 'phyloseq' package to 'microtable' object of 'microeco' package.
phyloseq2meco(physeq, ...)
phyloseq2meco(physeq, ...)
physeq |
a phyloseq object <doi:10.1371/journal.pone.0061217>. |
... |
parameter passed to microtable$new function of microeco package, such as auto_tidy parameter. |
microtable object.
## Not run: library(phyloseq) data("GlobalPatterns") phyloseq2meco(GlobalPatterns) ## End(Not run)
## Not run: library(phyloseq) data("GlobalPatterns") phyloseq2meco(GlobalPatterns) ## End(Not run)
Transform 'QIIME' results to microtable object. The QIIME results refer in particular to the files of qiime1 software.
qiime1meco( feature_table, sample_table = NULL, match_table = NULL, phylo_tree = NULL, rep_fasta = NULL, split = "; ", ... )
qiime1meco( feature_table, sample_table = NULL, match_table = NULL, phylo_tree = NULL, rep_fasta = NULL, split = "; ", ... )
feature_table |
the otu table generated from 'QIIME'. Taxonomic information should be in the end of the file. |
sample_table |
default NULL; sample metadata table; If provided, must be one of the several types of formats:
1) comma seperated file with the suffix csv or tab seperated file with suffix tsv/txt;
2) Excel type file with the suffix xlsx or xls; require |
match_table |
default NULL; a two column table used to replace the sample names in feature table; Must be two columns without column names;
The first column must be raw sample names same with those in feature table,
the second column must be new sample names same with the rownames in sample_table; Please also see the example files.
If provided, must be one of the several types of formats: |
phylo_tree |
default NULL; the phylogenetic tree; generally, a file with suffix "tre". |
rep_fasta |
default NULL; the representative sequences; a fasta file, generally with suffix "fasta" or "fna" or "fa". |
split |
default "; "; character pattern for splitting the taxonomic information. |
... |
parameter passed to microtable$new function of microeco package, such as |
microtable
object.
## Not run: # use the raw data files stored inside the package otu_file_path <- system.file("extdata", "otu_table_raw.txt", package="file2meco") sample_file_path <- system.file("extdata", "sample_info.csv", package="file2meco") phylo_file_path <- system.file("extdata", "rep_phylo.tre", package="file2meco") rep_fasta_path <- system.file("extdata", "rep.fna", package="file2meco") qiime1meco(otu_file_path, sample_table = sample_file_path) qiime1meco(otu_file_path, sample_table = sample_file_path, phylo_tree = phylo_file_path) qiime1meco(otu_file_path, sample_table = sample_file_path, phylo_tree = phylo_file_path, rep_fasta = rep_fasta_path) ## End(Not run)
## Not run: # use the raw data files stored inside the package otu_file_path <- system.file("extdata", "otu_table_raw.txt", package="file2meco") sample_file_path <- system.file("extdata", "sample_info.csv", package="file2meco") phylo_file_path <- system.file("extdata", "rep_phylo.tre", package="file2meco") rep_fasta_path <- system.file("extdata", "rep.fna", package="file2meco") qiime1meco(otu_file_path, sample_table = sample_file_path) qiime1meco(otu_file_path, sample_table = sample_file_path, phylo_tree = phylo_file_path) qiime1meco(otu_file_path, sample_table = sample_file_path, phylo_tree = phylo_file_path, rep_fasta = rep_fasta_path) ## End(Not run)
Transform 'QIIME2' qza results to microtable object.
qiime2meco( feature_table, sample_table = NULL, match_table = NULL, taxonomy_table = NULL, phylo_tree = NULL, rep_fasta = NULL, ... )
qiime2meco( feature_table, sample_table = NULL, match_table = NULL, taxonomy_table = NULL, phylo_tree = NULL, rep_fasta = NULL, ... )
feature_table |
the ASV abundance data with qza format, such as the |
sample_table |
default NULL; the sample metadata table; four types of formats are available: |
match_table |
default NULL; a two column table used to replace the sample names in feature table; Must be two columns without column names;
The first column must be raw sample names same with those in feature table,
the second column must be new sample names same with the rownames in sample_table; Please also see the example files.
If provided, must be one of the several types of formats: |
taxonomy_table |
default NULL; the taxonomy assignment data with qza format, such as the |
phylo_tree |
default NULL; the phylogenetic tree with qza format, such as the |
rep_fasta |
default NULL; the representative sequences with qza format, such as the |
... |
parameter passed to |
microtable
object.
## Not run: # The data files is downloaded from https://docs.qiime2.org/2020.8/tutorials/pd-mice/ # and stored inside the package. abund_file_path <- system.file("extdata", "dada2_table.qza", package="file2meco") sample_file_path <- system.file("extdata", "sample-metadata.tsv", package="file2meco") taxonomy_file_path <- system.file("extdata", "taxonomy.qza", package="file2meco") qiime2meco(abund_file_path) qiime2meco(abund_file_path, sample_table = sample_file_path) qiime2meco(abund_file_path, sample_table = sample_file_path, taxonomy_table = taxonomy_file_path) ## End(Not run)
## Not run: # The data files is downloaded from https://docs.qiime2.org/2020.8/tutorials/pd-mice/ # and stored inside the package. abund_file_path <- system.file("extdata", "dada2_table.qza", package="file2meco") sample_file_path <- system.file("extdata", "sample-metadata.tsv", package="file2meco") taxonomy_file_path <- system.file("extdata", "taxonomy.qza", package="file2meco") qiime2meco(abund_file_path) qiime2meco(abund_file_path, sample_table = sample_file_path) qiime2meco(abund_file_path, sample_table = sample_file_path, taxonomy_table = taxonomy_file_path) ## End(Not run)
Transform the 'TreeSummarizedExperiment' object to 'microtable' object of 'microeco' package.
tse2meco(tse, ...)
tse2meco(tse, ...)
tse |
a TreeSummarizedExperiment object <doi:10.12688/f1000research.26669.2>. |
... |
parameter passed to microtable$new function of microeco package, such as auto_tidy parameter. |
microtable object.
Transform the results of viromescan software to microtable object. The output of viromescan is single file for each sample. All the results are needed to be merged and adjusted (for several chaotic taxonomy). The input should be the 'count' tables at Species level, i.e. Species_level_results-Counts.txt. For more details, please see the reference <DOI: 10.1186/s12864-016-2446-3>.
vs2meco(input_dir, sample_table = NULL, match_table = NULL, ...)
vs2meco(input_dir, sample_table = NULL, match_table = NULL, ...)
input_dir |
the input directory, containing all the result folders for each sample. Each folder should be named by the sample name. |
sample_table |
default NULL; sample metadata table; If provided, must be one of the several types of formats: |
match_table |
default NULL; a two column table used to replace the sample names in abundance table; Must be two columns without column names; The first column must be raw sample names same with those in feature table, the second column must be new sample names same with the rownames in sample_table; Please also see the example files. |
... |
parameter passed to microtable$new function of microeco package, such as auto_tidy parameter. |
microtable object.
library(microeco) library(file2meco) # use viromescan directory inside the package dir_path <- system.file("extdata", "viromescan", package="file2meco") d1 <- vs2meco(dir_path) d1$cal_abund() # d1$taxa_abund$Family is same with the percentage output of viromescan at # Family level, i.e. Family_level_results-%.txt file d1$cal_abund(rel = FALSE) # d1$taxa_abund$Family is same with the count output of viromescan at # Family level, i.e. Family_level_results-Counts.txt file
library(microeco) library(file2meco) # use viromescan directory inside the package dir_path <- system.file("extdata", "viromescan", package="file2meco") d1 <- vs2meco(dir_path) d1$cal_abund() # d1$taxa_abund$Family is same with the percentage output of viromescan at # Family level, i.e. Family_level_results-%.txt file d1$cal_abund(rel = FALSE) # d1$taxa_abund$Family is same with the count output of viromescan at # Family level, i.e. Family_level_results-Counts.txt file